
Unification-Based
Grammar Engineering

Dan Flickinger
Stanford University & Redbird Advanced Learning

danf@stanford.edu

Stephan Oepen
Oslo University
oe@ifi.uio.no

ESSLLI 2016; August 15–19, 2016

Outlook: The English Resource Grammar (ERG)

Development Background (1993 – today)

• General-purpose, wide-coverage, computational English grammar;

• mainly Dan Flickinger, with Malouf, Bender, Smith, Oepen, others;

• supported in multiple HPSG processing environments (LKB & PET);

• coverage of 85 – 98 % of running text across genres and domains;

• multitude of research users and applications; a few companies.

#

"

!
http://erg.delph-in.net/

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (2)

DELPH-IN: Deep Linguistic Processing with HPSG

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (3)

The 2016 Certified Grammar Engineer(s) Contest'

&

$

%

Success Criteria
No load-time errors; additional test items; full coverage, no

over-generation, no spurious ambiguity; one fact, one
place; documentation on thought process; capitalization,

indentation, and whitespace; signs of emacs(1) use.

ESSLLI339 (Thursday, 18:01)
• Fairly rudimentary sloution; really just getting started on Exercise 2.

ESSLLI146 (Thursday, 23:51)
• Near-perfect solution to Exercise 3; nice solution to modifier ordering;

• remaining under-generation: sentence-initial adverbs blocked in rule.

ESSLLI311 (Friday, 08:49)
• Functionally perfect solution to Exercise 4; tiny redundancy residues.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (4)

The 2016 Certified Grammar Engineer(s) Contest'

&

$

%

Success Criteria
No load-time errors; additional test items; full coverage, no

over-generation, no spurious ambiguity; one fact, one
place; documentation on thought process; capitalization,

indentation, and whitespace; signs of emacs(1) use.

ESSLI339 (Thursday, 18:01)
• Fairly rudimentary solution; really just getting started on Exercise 2.

ESSLI146 (Thursday, 23:51)
• Near-perfect solution to Exercise 3; nice solution to modifier ordering;

• remaining under-generation: sentence-initial adverbs blocked in rule.

ESSLI311 (Friday, 08:49)
• Functionally perfect solution to Exercise 4; tiny redundancy residues.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (4)

The 2016 Certified Grammar Engineer(s) Contest'

&

$

%

Success Criteria
No load-time errors; additional test items; full coverage, no

over-generation, no spurious ambiguity; one fact, one
place; documentation on thought process; capitalization,

indentation, and whitespace; signs of emacs(1) use.

ESSLI339 (Thursday, 18:01)
• Fairly rudimentary solution; really just getting started on Exercise 2.

ESSLI146 (Thursday, 23:51)
• Near-perfect solution to Exercise 3; nice solution to modifier ordering;

• remaining under-generation: sentence-initial adverbs blocked in rule.

ESSLI311 (Friday, 08:49)
• Functionally perfect solution to Exercise 4; tiny redundancy residues.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (4)

The 2016 Certified Grammar Engineer(s) Contest'

&

$

%

Success Criteria
No load-time errors; additional test items; full coverage, no

over-generation, no spurious ambiguity; one fact, one
place; documentation on thought process; capitalization,

indentation, and whitespace; signs of emacs(1) use.

ESSLI339 (Thursday, 18:01)
• Fairly rudimentary solution; really just getting started on Exercise 2.

ESSLI146 (Thursday, 23:51)
• Near-perfect solution to Exercise 3; nice solution to modifier ordering;

• remaining under-generation: sentence-initial adverbs blocked in rule.

ESSLI311 (Friday, 08:49)
• Functionally perfect solution to Exercise 4; tiny redundancy residues.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (4)

Summing up Basic Terminology

Government — Agreement — Licensing

The dog barks. — ∗The dog a cat barks — ∗The dog barks a cat.
Kim depends on Sandy — ∗Kim depends in Sandy
The class meets everyday in room 5.18 at 17:00.

• Constituent node in analysis tree (terminal or instantiation of rule);

• Government directed: a property of c1 determines the form of c2;

• Agreement bi-directional: co-occurence of properties on c1 and c2.

• Head licenses additional constituents and can govern their form;

• Specifier precedes head, singleton, nominative case, agreement;

• Complement post-head, licensed and governed, order constraints;

• Adjunct ‘free’ modifier, optional, may iterate, designated position.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (5)

Composition: Appending Lists with Unification

• A difference list embeds an open-ended list into a container structure
that provides a ‘pointer’ to the end of the ordinary list at the top level:

A

dlist


LIST 1

ne-list


FIRST X
REST 2 *list*


LAST 2


B

dlist


LIST 3

ne-list


FIRST Y
REST 4 *list*


LAST 4



• Using the LAST pointer of difference list A we can append A and B by

(i) unifying the front of B (i.e. the value of its LIST feature) into the tail
of A (i.e. the value of its LAST feature); and

(ii) using the tail of B as the new tail for the result of the concatenation.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (6)

An Example: Concatenation of Orthography

ORTH

LIST 1
LAST 3



 −→

ORTH

LIST 1
LAST 2



,
ORTH


LIST 2
LAST 3





ABabcdfghiejkl esslli — -aug-

Grammar Engineering (7)

An Example: Concatenation of Orthography

ORTH

LIST 1
LAST 3



 −→

ORTH

LIST 1
LAST 2



,
ORTH


LIST 2
LAST 3





'

&

$

%

binary-rule := phrase &

[ORTH [LIST #front, LAST #tail],

ARGS < [ORTH [LIST #front, LAST #middle]],

[ORTH [LIST #middle, LAST #tail]] >].

binary-head-initial := head-initial & binary-rule.

binary-head-final := head-final & binary-rule.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (8)

Notational Conventions

• lists not available as built-in data type; abbreviatory notation in TDL:

< a, b > ≡ [FIRST a, REST [FIRST b, REST *null*]]

• underspecified (variable-length) list:

< a ... > ≡ [FIRST a, REST *list*]

• difference (open-ended) lists; allow concatenation by unification:

<! a !> ≡ [LIST [FIRST a, REST #tail], LAST #tail]

• built-in and ‘non-linguistic’ types pre- and suffixed by asterisk (*top*);

• strings (e.g. “chased”) need no declaration; always subtypes of *string* ;

• strings cannot have subtypes and are (thus) mutually incompatible.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (8)

Our Grammars: Table of Contents

Type Description Language (TDL)
• types.tdl type definitions: hierarchy of grammatical knowledge;

• lexicon.tdl instances of (lexical) types plus orthography;

• rules.tdl instances of construction types; used by the parser;

• lrules.tdl lexical rules, applied before non-lexical rules;

• irules.tdl lexical rules that require orthographemic variation;

• roots.tdl grammar start symbol(s): ‘selection’ of final results.

Auxiliary Files (Grammar Configuration for LKB)
• labels.tdl TFS templates abbreviating node labels in trees;

• globals.lsp, user-fns.lsp parameters and interface functions.

ABabcdfghiejkl esslli — -aug-

Grammar Engineering (9)

