Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. The granulocyte-macrophage colony-stimulating factor (GM-CSF) gene promoter contains a consensus sequence for the polyomavirus enhancer binding-protein 2 (PEBP2) transcription factor, which consists of alpha and beta subunits. There are at least two genes, alpha A and alpha B, encoding the alpha subunit. alpha B is the mouse homologue of human AML1 gene detected at the breakpoints of t(8;21) and t(3;21) myeloid leukemias. We examined alpha A1 (an alpha A-gene product) and alpha B1 and alpha B2 (two alpha B-encoded isomers) for their effects on the GM-CSF promoter. PEBP2 alpha A1, alpha B1, and alpha B2 proteins bound the PEBP2 site within the mouse GM-CSF promoter. PEBP2 alpha A1 and alpha B1 enhanced the expression of the GM-CSF promoter-driven reporter plasmid in unstimulated and 12-O-tetradecanoylphorbol 13-acetate/phytohemagglutinin-stimulated human Jurkat T cells. In contrast, the promoter activity was suppressed by alpha B2. Coexpression of alpha B1 and alpha B2 showed that the promoter activity could be determined by the alpha B1/alpha B2 ratio. Jurkat cell extract contained PEBP2 site-binding protein(s) that cross-reacted with antimouse alpha A1 antibodies. Northern blot analysis indicated the expression of human PEBP2 alpha A, alpha B (AML1), and beta genes in Jurkat cells. Although further studies are required to determine the precise role of PEBP2 in the GM-CSF promoter activity, the present findings suggested the importance of the relative ratio of different PEBP2 isoforms in regulating the levels of the promoter activity.