Initiation binding repressor, a factor that binds to the transcription initiation site of the histone h5 gene, is a glycosylated member of a family of cell growth regulators [corrected] [published erratum appears in Mol Cell Biol 1996 Feb;16(2):735] Initiation binding repressor [corrected] (IBR) is a chicken erythrocyte factor (apparent molecular mass, 70 to 73 kDa) that binds to the sequences spanning the transcription initiation site of the histone h5 gene, repressing its transcription. A variety of other cells, including transformed erythroid precursors, do not have IBR but a factor referred to as IBF (68 to 70 kDa) that recognizes the same IBR sites. We have cloned the IBR cDNA and studied the relationship of IBR and IBF. IBR is a 503-amino-acid-long acidic protein which is 99.0% identical to the recently reported human NRF-1/alpha-Pal factor and highly related to the invertebrate transcription factors P3A2 and erected wing gene product (EWG). We present evidence that IBR and IBF are most likely identical proteins, differing in their degree of glycosylation. We have analyzed several molecular aspects of IBR/F and shown that the factor associates as stable homodimers and that the dimer is the relevant DNA-binding species. The evolutionarily conserved N-terminal half of IBR/F harbors the DNA-binding/dimerization domain (outer limits, 127 to 283), one or several casein kinase II sites (37 to 67), and a bipartite nuclear localization signal (89 to 106) which appears to be necessary for nuclear targeting. Binding site selection revealed that the alternating RCGCRYGCGY consensus constitutes high-affinity IBR/F binding sites and that the direct-repeat palindrome TGCGCATGCGCA is the optimal site. A survey of genes potentially regulated by this family of factors primarily revealed genes involved in growth-related metabolism.