Diminished responses to IL-13 by human monocytes differentiated in vitro: role of the IL-13Ralpha1 chain and STAT6. The primary IL-13 receptor complex on human monocytes is believed to be a heterodimer comprised of the IL-4R alpha chain and the IL-2R gamma chain (gamma(c))-like molecule, IL-13R alpha1. mRNA levels for IL-13R alpha1, but not IL-4R alpha, were markedly decreased in in vitro monocyte-derived macrophages (MDMac), and with increasing time of monocytes in culture correlated with the loss of IL-13 regulation of lipopolysaccharide-induced TNF-alpha production. Analysis of cell lines Daudi and THP-1 that differentially express gamma(c) and IL-13R alpha1 showed that IL-13 can activate STAT6 in IL-13R alpha1-positive THP-1 cells but not in gamma(c)-positive, IL-13R alpha1-negative Daudi cells. IL-13 activation of STAT6 was reduced in MDMac which was associated with diminished IL-13-induced expression of CD23 and MHC class II. However, with reduced IL-13R alpha1 expression and low nuclear STAT6 activity, some IL-13-induced responses were unaltered in magnitude in MDMac. In the absence of functional IL-13R alpha1 and gamma(c), IL-13 must signal through an alternative receptor complex on MDMac. Experiments with a blocking antibody to IL-4R alpha showed that this chain remains an essential component of the IL-13 receptor complex on MDMac.