HIV-1 envelope glycoproteins induce activation of activated protein-1 in CD4+ T cells [published erratum appears in J Biol Chem 1995 Dec 1;270(48):29038] Activation of CD4 positive T cells is a primary requirement for human immunodeficiency virus (HIV) entry, efficient HIV replication, and progression to AIDS, Utilizing CD4 positive T cell lines and purified T cells from normal individuals, we have demonstrated that native envelope glycoproteins of HIV, gp 160, can induce activation of transcription factor, activated protein-1 (AP-1). The stimulatory effects of gp160 are mediated through the CD4 molecule, since treatment of gp160 with soluble CD4-IgG abrogates its activity, and CD4 negative T cell lines fail to be stimulated with gp160. Immunoprecipitation of the gp 160-induced nuclear extracts with polyclonal antibodies to Fos and Jun proteins indicates that AP-1 complex is comprised of members of these family of proteins. The gp160-induced AP-1 complex is dependent upon protein tyrosine phosphorylation and is protein synthesis-independent. This stimulation can also be abolished by inhibitors of protein kinase C, but it is unaffected by calcium channel blocker or cyclosporine A. This gp160 treatment adversely affects the functional capabilities of T cells: pre-treatment of CD4+ T cells with gp160 for 4 h at 37 degrees C inhibited anti-CD3-induced interleukin-2 secretion. Effects similar to gp160 were seen with anti-CD4 mAb. The aberrant activation of AP-1 by gp160 in CD4 positive T cells could result in up-regulation of cytokines containing AP-1 sites, e.g. interleukin-3 and granulocyte macrophage colony-stimulating factor, and concurrently lead to T cell unresponsiveness by inhibiting interleukin-2 secretion.