Effects of interleukin-10 on human peripheral blood mononuclear cell responses to Cryptococcus neoformans, Candida albicans, and lipopolysaccharide. Deactivation of mononuclear phagocytes is critical to limit the inflammatory response but can be detrimental in the face of progressive infection. We compared the effects of the deactivating cytokine interleukin 10 (IL-10) on human peripheral blood mononuclear cell (PBMC) responses to lipopolysaccharide (LPS), Cryptococcus neoformans, and Candida albicans. IL-10 effected dose-dependent inhibition of tumor necrosis factor alpha (TNF-alpha) release in PBMC stimulated by LPS and C. neoformans, with significant inhibition seen with 0.1 U/ml and greater than 90% inhibition noted with 10 U/ml. In contrast, even at doses as high as 100 U/ml, IL-10 inhibited TNF-alpha release in response to C. albicans by only 50%. IL-10 profoundly inhibited release of IL-1beta from PBMC stimulated by all three stimuli. TNF-alpha mRNA and release was inhibited even if IL-10 was added up to 8 h after cryptococcal stimulation. In contrast, inhibition of IL-1 beta mRNA was of lesser magnitude and occurred only when IL-10 was added within 2 h of cryptococcal stimulation. IL-10 inhibited translocation of NF-kappaB in response to LPS but not the fungal stimuli. All three stimuli induced IL-10 production in PBMC, although over 10-fold less IL-10 was released in response to C. neoformans compared with LPS and C. albicans. Thus, while IL-10 has deactivating effects on PBMC responses to all three stimuli, disparate stimulus- and response-specific patterns of deactivation are seen. Inhibition by IL-10 of proinflammatory cytokine release appears to occur at the level of gene transcription for TNF-alpha and both transcriptionally and posttranscriptionally for IL-1beta.