Regulation of the human interleukin-2 gene by the alpha and beta isoforms of the glucocorticoid receptor. The immunosuppressive effects of glucocorticoids are largely due to transcriptional inhibition of immunologically relevant genes, such as the interleukin-2 (IL-2) gene. These effects are mediated by the intracellular glucocorticoid receptor (GR). In humans, alternative splicing of the GR precursor mRNA gives rise to two receptor isoforms, termed GRalpha and GRbeta. We previously demonstrated that GRbeta could antagonize GRalpha-mediated transactivation of a glucocorticoid-responsive element (GRE)-driven reporter gene in COS-7 cells. The present study was designed to analyze the roles of the two GR isoforms on glucocorticoid-mediated transrepression of the IL-2 gene. Using a recently developed transfection technique, we demonstrate that in primary human lymphocytes, stimulation of a 548 bp IL-2 promoter-luciferase reporter construct by phorbol ester and calcium ionophore is reversed by dexamethasone to a similar extent as in Jurkat T lymphoma cells transfected with a GRalpha expression vector. Transfection of a GRbeta expression vector alone did not result in IL-2 promoter repression in response to glucocorticoids. Furthermore, GRbeta did not antagonize the repressive effects of GRalpha on IL-2 promoter activity. Surprisingly, overexpression of GRbeta in Jurkat cells did not cause significant inhibition of GRalpha-induced transactivation of a GRE-dependent luciferase reporter gene either. We conclude that the transrepressive effect of glucocorticoids on IL-2 gene transcription is exclusively mediated by GRalpha. GRbeta can neither antagonize GRalpha-mediated transactivation nor transrepression in Jurkat cells, indicating a cell type-specific pattern of GRbeta-mediated antiglucocorticoid activity.