Phorbol ester reduces constitutive nuclear NF kappa B and inhibits HIV-1 production in mature human monocytic cells. NF kappa B is a potent mediator of specific gene expression in human monocytes and has been shown to play a role in transcription of the HIV-1 genome in promonocytic leukemias. There is little information available on the response of NF kappa B to cytokines in normal human monocytes. We have used a 32P-labeled oligonucleotide derived from human immunodeficiency virus (HIV-1) long terminal repeat, which contains a tandem repeat of the NF kappa B binding sequence, as a probe in a gel retardation assay to study this transcription factor. Using this assay, we have detected NF kappa B in extracts of nuclei from normal human monocytes. Treatment of normal monocytes with 12-0-tetradecanoyl phorbol-13-acetate (TPA) for 4-24 h caused the complete disappearance of NF kappa B from nuclear extracts of monocytes. A similar result was obtained with the mature monocytic leukemia cell line THP-1. The constitutive transcription factor SP1 was unaffected by addition of TPA. The disappearance of NF kappa B from the nucleus was concentration dependent between 10 and 50 ng/ml of phorbol ester. In THP-1 cells, TPA also induced a new, faster-migrating NF kappa B species not induced in monocytes. Protein kinase C inhibitor staurosporine, but not cyclic nucleotide-dependent protein kinase inhibitor HA-1004, also dramatically reduced constitutive levels of nuclear NF kappa B. Finally, TPA addition to monocytes infected with HIV-1 inhibited HIV-1 replication, as determined by reverse transcriptase assays, in a concentration-dependent manner. These results are in striking contrast to the increase in nuclear NF kappa B and HIV-1 replication induced by phorbol esters in promonocytic leukemia cells U937 and HL-60, and emphasize the importance of studying cytokine regulation of HIV-1 in normal monocytes.