Activity of the kappa B enhancer of the interleukin-2 receptor alpha chain in somatic cell hybrids is accompanied by the nuclear localization of NF-kappa B. The two nuclear proteins NF-kappa B (consisting of subunits p50 and p65) and the DNA-binding subunit of NF-kappa B (p50) by itself, also called KBF1, are constitutively expressed and localized in the nucleus of the human T-cell line IARC 301.5. In order to define the roles of these two factors, which bind to the same kappa B enhancers, in transcription activation we have prepared somatic cell hybrids between IARC 301.5 and a murine myeloma. Most hybrids express both KBF1 and NF-kappa B in their nuclei, but one hybrid expresses only KBF1. The kappa B enhancer of the gene encoding the interleukin-2 (IL-2) receptor alpha chain (IL-2R alpha) is functional only in the hybrids expressing nuclear NF-kappa B. These findings show that nuclear NF-kappa B is necessary to activate the kappa B enhancer, while KBF1 by itself is not sufficient. We propose that KBF1 is a competitive inhibitor of NF-kappa B and discuss how these factors may be involved in the transient expression of IL-2 and IL-2R alpha genes during the immune response.