Costimulation of human CD4+ T cells with LFA-3 and B7 induce distinct effects on AP-1 and NF-kappa B transcription factors. We have earlier shown that stimulation of human CD4+ T cells with SEA presented on Chinese hamster ovary (CHO)-DR transfectants coexpressing either B7 or LFA-3 resulted in distinct cytokine profiles. We now demonstrate that B7, but not LFA-3, strongly costimulated IL-2 transcription and mRNA expression in CD4+ T cells. Maximal increase in IL-2 transcription was recorded with CHO-DR/B7/LFA-3, suggesting a cooperative effect of B7 and LFA-3 at the transcriptional level. Gel-shift analysis demonstrated that stimulation of CD4+ T cells with CHO-DR and staphylococcal enterotoxin A was sufficient to induce significant amounts of NF-kappa B binding proteins, whereas induction of AP-1 binding proteins required costimulation. LFA-3 induced moderate levels of AP-1, but did not influence the levels of NF-kappa B, while B7 costimulation strongly induced both AP-1 and substantially enhanced NF-kappa B binding proteins. The CHO-DR/B7/LFA-3 triple transfectant induced a further increase in AP-1 and NF-kappa B binding proteins compared with the double transfectants. The level of Oct-1 binding proteins remained similar in all samples. Super-shift analysis revealed that the NF-kappa B complex of costimulated CD4+ T cells contained large amounts of p50, substantial amounts of p65, and marginal levels of c-Rel proteins. The AP-1 binding proteins contained c-Jun, Jun-D, and Fra-1, but marginal amounts of Jun-B and c-Fos. Our results indicate distinct effects of B7 and LFA-3 costimulation on the activity of AP-1 and NF-kappa B. These may partly account for the differential effects of B7 and LFA-3 costimulation on IL-2 expression.