Triggering of complement receptors CR1 (CD35) and CR3 (CD11b/CD18) induces nuclear translocation of NF-kappa B (p50/p65) in human monocytes and enhances viral replication in HIV-infected monocytic cells. Monocyte/macrophages may harbor HIV in a nonproductive fashion for prolonged periods of time. Viral gene expression may be reactivated by stimulation of the cells with LPS or cytokines such as TNF-alpha in vitro. The effect of LPS and TNF-alpha is mediated by their ability to induce nuclear translocation of the DNA-binding heterodimer NF-kappa B (p50/p65), which binds to a specific sequence in the HIV-long terminal repeat. The present study demonstrates that triggering of complement receptors CR1 (CD35) and CR3 (CD11b/CD18) enhances viral replication in HIV-infected human monocytic cells. Monocytic cell lines and normal peripheral blood monocytes were infected with HIV-1 in vitro and cultured in the presence or absence of F(ab')2 fragments of monoclonal anti-CR1 or anti-CR3 Abs or with C3 fragments. Stimulation of CR1 or CR3 induces a two- to fourfold increase in the amount of cell-associated and released p24 Ag in cell cultures that was equivalent to that observed in control cultures triggered with LPS. We further observed that stimulation of CR1 or CR3 induces the nuclear translocation of NF-kappa B p50/p65 in infected cells. Translocation of NF-kappa B p50/p65 was also observed following stimulation of CR1 or CR3 of uninfected peripheral blood monocytes from HIV-seronegative donors. The amount of protein translocated was similar to that observed when cells were stimulated with rhTNF-alpha. TNF-alpha did not mediate the translocation of NF-kappa B p50/p65 induced by triggering of complement receptors. Taken together, these observations suggest that HIV gene expression may be activated in infected monocytes through interaction of the cells with complement-opsonized particles and that enhanced viral replication is associated with C3 receptor-mediated nuclear translocation of the NF-kappa B complex.