A functional T-cell receptor signaling pathway is required for p95vav activity. Stimulation of the T-cell antigen receptor (TCR) induces activation of multiple tyrosine kinases, resulting in phosphorylation of numerous intracellular substrates. One substrate is p95vav, which is expressed exclusively in hematopoietic and trophoblast cells. It contains a number of structural motifs, including Src homology 2, Src homology 3, and pleckstrin homology domains and a putative guanine nucleotide exchange domain. The role of p95vav in TCR-mediated signaling processes is unclear. Here, we show that overexpression of p95vav alone in Jurkat T cells leads to activation of the nuclear factors, including NFAT, involved in interleukin-2 expression. Furthermore, p95vav synergizes with TCR stimulation in inducing NFAT- and interleukin-2-dependent transcription. In contrast, NFAT activation by a G-protein-coupled receptor is not modulated by p95vav overexpression, suggesting that the effect is specific to the TCR signaling pathways. Although removal of the first 67 amino acids of p95vav activates its transforming potential in NIH 3T3 cells, this region appears to be required for its function in T cells. We further demonstrate that the p95vav-induced NFAT activation is not mimicked by Ras activation, though its function is dependent upon Ras and Raf. Furthermore, the activating function of p95vav is blocked by FK506, suggesting that its activity also depends on calcineurin. To further dissect p95vav involvement in TCR signaling, we analyzed various Jurkat mutants deficient in TCR signaling function or TCR expression and showed that an intact TCR signaling pathway is required for p95vav to function. However, overexpression of p95vav does not appear to influence TCR-induced protein tyrosine phosphorylation or increases in cytoplasmic free calcium. Taken together, our data suggest that p95vav plays an important role at an yet unidentified proximal position in the TCR signaling cascade.