Functional characterization of novel IL-2 transcriptional inhibitors. IL-2-mediated T cell proliferation is a critical early event in the inflammatory process. Formation of the NFAT-1 transcriptional complex on the IL-2 promoter is essential for IL-2 transcription. Using a cell line that is stably transfected with a trimer of the NFAT-1 regulatory element linked to a lac-Z reporter gene, we screened for inhibitors of NFAT-1-mediated beta-galactosidase activity. WIN 61058 and WIN 53071 were identified as microM inhibitors. These compounds also inhibited beta-galactosidase mRNA levels. Similar inhibition of NFAT-1-mediated gene expression was observed in a second cell line, which is stably transfected with NFAT-1 regulatory elements linked to the reporter gene for sCD8. At 10 microM, both compounds inhibited IL-2 mRNA and protein levels in the NFAT-1-linked lac-Z transfectants, and in human lymphocytes. Both compounds inhibited the mixed lymphocyte reaction, and this inhibition was reversed by exogenous IL-2. WIN 53071 inhibited IL-2 production induced in the calcium-dependent PMA and ionomycin pathway. Conversely, calcium-independent anti-CD28 Ab and PMA-induced IL-2 production was resistant. Both compounds altered the NFAT-1 transcriptional complex, causing its retarded mobility on gels. By these functional criteria, we believe we have identified two structurally distinct, novel inhibitors of NFAT-1-mediated transcription.