Hypoxic induction of interleukin-8 gene expression in human endothelial cells. Because leukocyte-mediated tissue damage is an important component of the pathologic picture in ischemia/reperfusion, we have sought mechanisms by which PMNs are directed into hypoxic tissue. Incubation of human endothelial cells (ECs) in hypoxia, PO2 approximately 14-18 Torr, led to time-dependent release of IL-8 antigen into the conditioned medium; this was accompanied by increased chemotactic activity for PMNs, blocked by antibody to IL-8. Production of IL-8 by hypoxic ECs occurred concomitantly with both increased levels of IL-8 mRNA, based on polymerase chain reaction analysis, and increased IL-8 transcription, based on nuclear run-on assays. Northern analysis of mRNA from hypoxic ECs also demonstrated increased levels of mRNA for macrophage chemotactic protein-1, another member of the chemokine superfamily of proinflammatory cytokines. IL-8 gene induction was associated with the presence of increased binding activity in nuclear extracts from hypoxic ECs for the NF-kB site. Studies with human umbilical vein segments exposed to hypoxia also demonstrated increased elaboration of IL-8 antigen compared with normoxic controls. In mice exposed to hypoxia (PO2 approximately 30-40 Torr), there was increased pulmonary leukostasis, as evidenced by increased myeloperoxidase activity in tissue homogenates. In parallel, increased levels of transcripts for IP-10, a murine homologue in the chemokine family related to IL-8, were observed in hypoxic lung tissue. Taken together, these data suggest that hypoxia constitutes a stimulus for leukocyte chemotaxis and tissue leukostasis.