Surfactant suppresses NF-kappa B activation in human monocytic cells. In addition to biophysical properties, pulmonary surfactant has immunomodulatory activity. We previously demonstrated that both synthetic (Exosurf) and modified natural surfactant (Survanta) downregulated endotoxin-stimulated inflammatory cytokine mRNA levels and protein products (tumor necrosis factor-alpha [TNF], interleukin-1-beta [IL-1], interleukin-6 [IL-6]) in human alveolar macrophages. In this study, we report that both Exosurf and Survanta suppress TNF mRNA and secretion (85 +/- 4% mean percent inhibition +/- SEM by Exosurf; 71 +/- 6% by Survanta) by endotoxin-stimulated THP-1, a human monocytic cell line. Because surfactant downregulated inflammatory cytokine production similarly in both normal human alveolar macrophages and the THP-1 cell line, we used this cell line to investigate whether surfactant affected transcriptional mechanisms. Specifically, we examined nuclear factor-kappa B (NF-kappa B) activation because it is crucial in transcriptional regulation of many inflammatory cytokine genes including TNF, IL-1, and IL-6. Electrophoretic mobility shift assays showed that both surfactants decreased activation of NF-kappa B. The presence of both p65 and p50 NF-kappa B components in LPS-activated THP-1 cells was confirmed by specific antibody induction of supershifts in mobility assays. These results are the first to suggest that surfactant's suppressive effects on inflammatory cytokine production may involve transcriptional regulation through inhibition of NF-kappa B activation.