Cell-type-specific regulation of the human tumor necrosis factor alpha gene in B cells and T cells by NFATp and ATF-2/JUN. The human tumor necrosis factor alpha (TNF-alpha) gene is one of the earliest genes transcribed after the stimulation of a B cell through its antigen receptor or via the CD-40 pathway. In both cases, induction of TNF-alpha gene transcription can be blocked by the immunosuppressants cyclosporin A and FK506, which suggested a role for the NFAT family of proteins in the regulation of the gene in B cells. Furthermore, in T cells, two molecules of NFATp bind to the TNF-alpha promoter element kappa 3 in association with ATF-2 and Jun proteins bound to an immediately adjacent cyclic AMP response element (CRE) site. Here, using the murine B-cell lymphoma cell line A20, we show that the TNF-alpha gene is regulated in a cell-type-specific manner. In A20 B cells, the TNF-alpha gene is not regulated by NFATp bound to the kappa 3 element. Instead, ATF-2 and Jun proteins bind to the composite kappa 3/CRE site and NFATp binds to a newly identified second NFAT site centered at -76 nucleotides relative to the TNF-alpha transcription start site. This new site plays a critical role in the calcium-mediated, cyclosporin A-sensitive induction of TNF-alpha in both A20 B cells and Ar-5 cells. Consistent with these results, quantitative DNase footprinting of the TNF-alpha promoter using increasing amounts of recombinant NFATp demonstrated that the -76 site binds to NFATp with a higher affinity than the kappa 3 site. Two other previously unrecognized NFATp-binding sites in the proximal TNF-alpha promoter were also identified by this analysis. Thus, through the differential use of the same promoter element, the composite kappa 3/CRE site, the TNF-alpha gene is regulated in a cell-type-specific manner in response to the same extracellular signal.