Inhibitory effect of growth hormone on TNF-alpha secretion and nuclear factor-kappaB translocation in lipopolysaccharide-stimulated human monocytes. Several studies have pointed to a link between immune and endocrine systems, including a regulatory function of GH on monocyte activation. The present study demonstrates that human THP-1 promonocytic cells, engineered by gene transfer to constitutively produce human growth hormone (hGH), secreted depressed amounts of TNF-alpha in response to challenge by LPS. The effect of GH appears to occur in an autocrine fashion, since the inhibitory effect on TNF-alpha secretion by constitutive GH production could be abolished in the presence of anti-hGH mAb. The GH-induced inhibitory effect was also observed using normal human monocytes and monocyte-derived macrophages. Inhibition of TNF-alpha production by THP-1-hGH-transfected cells cultured in the presence of LPS is dependent on a selective pathway, since no inhibition of TNF-alpha production was observed when cells were cultured in the presence of PMA. Inhibition of TNF-alpha secretion by LPS-stimulated THP-1-hGH cells was associated with a decrease in nuclear translocation of nuclear factor-kappaB. The capacity of GH to inhibit LPS-induced TNF-alpha production by monocytes without altering other pathways leading to TNF-alpha production may be of potential relevance in septic shock, since GH is available for clinical use.