Involvement of an SAF-like transcription factor in the activation of serum amyloid A gene in monocyte/macrophage cells by lipopolysaccharide. Serum amyloid A (SAA) has been linked to atherosclerosis because of its ability to remodel high-density lipoprotein by the depletion of apolipoprotein A1, its ability to bind cholesterol, and its presence in the atherosclerotic plaques of coronary and carotid arteries. In the present study, we investigated the induction mechanism of SAA gene in THP-1 monocyte/macrophage cells which play a critical role in the development of atherosclerotic fatty streak and plaque formation. We and others have shown that SAA gene is induced in monocyte/macrophage cells by lipopolysaccharide (LPS). By promoter function analysis, we show that the SAA promoter sequence between -280 and -226 can confer LPS responsiveness. Gel electrophoretic mobility shift assay detected an induced DNA-binding activity in these cells in response to LPS. Characterization of the DNA-binding protein by UV cross-linking, Southwestern blot, and antibody ablation/supershift assays revealed that it is similar to a recently reported nuclear factor designated SAF. These results demonstrated that LPS-mediated SAA gene induction in monocyte/macrophage cells is primarily due to the induction of SAF activity.