EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Early B cell factor (EBF) and E47 participate in the transcriptional control of early B lymphocyte differentiation. With the aim of identifying genetic targets for these transcription factors, we stably transfected cDNAs encoding EBF or a covalent homodimer of E47, individually or together, into immature hematopoietic Ba/F3 cells, which lack both factors. In combination, EBF and E47 induce efficient expression of the endogenous immunoglobulin surrogate light chain genes, lambda5 and VpreB, whereas other pre-B cell-specific genes remain silent. Multiple functionally important EBF and E47 binding sites were identified in the lambda5 promoter/enhancer region, indicating that lambda5 is a direct genetic target for these transcription factors. Taken together, these data suggest that EBF and E47 synergize to activate expression of a subset of genes that define an early stage of the B cell lineage.