Prostaglandin E2 Up-regulates HIV-1 long terminal repeat-driven gene activity in T cells via NF-kappaB-dependent and -independent signaling pathways. Replication of human immunodeficiency virus type-1 (HIV-1) is highly dependent on the state of activation of the infected cells and is modulated by interactions between viral and host cellular factors. Prostaglandin E2 (PGE2), a pleiotropic immunomodulatory molecule, is observed at elevated levels during HIV-1 infection as well as during the course of other pathogenic infections. In 1G5, a Jurkat-derived T cell line stably transfected with a luciferase gene driven by HIV-1 long terminal repeat (LTR), we found that PGE2 markedly enhanced HIV-1 LTR-mediated reporter gene activity. Experiments have been conducted to identify second messengers involved in this PGE2-dependent up-regulating effect on the regulatory element of HIV-1. In this study, we present evidence indicating that signal transduction pathways induced by PGE2 necessitate the participation of cyclic AMP, protein kinase A, and Ca2+. Experiments conducted with different HIV-1 LTR-based vectors suggested that PGE2-mediated activation effect on HIV-1 transcription was transduced via both NF-kappaB-dependent and -independent signaling pathways. The involvement of NF-kappaB in the PGE2-dependent activating effect on HIV-1 transcription was further confirmed using a kappaB-regulated luciferase encoding vector and by electrophoretic mobility shift assays. Results from Northern blot and flow cytometric analyses, as well as the use of a selective antagonist indicated that PGE2 modulation of HIV-1 LTR-driven reporter gene activity in studied T lymphoid cells is transduced via the EP4 receptor subtype. These results suggest that secretion of PGE2 by macrophages in response to infection or inflammatory activators could induce signaling events resulting in activation of proviral DNA present into T cells latently infected with HIV-1.