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Abstract

Encoders that generate representations
based on context have, in recent years,
benefited from adaptations that allow for
pre-training on large text corpora. Ear-
lier work on evaluating fixed-length sen-
tence representations has included the use
of ‘probing’ tasks, that use diagnostic clas-
sifiers to attempt to quantify the extent to
which these encoders capture specific lin-
guistic phenomena. The principle of prob-
ing has also resulted in extended evalua-
tions that include relatively newer word-
level pre-trained encoders. We build on
probing tasks established in the literature
and comprehensively evaluate and analyse
– from a typological perspective amongst
others – multilingual variants of existing
encoders on probing datasets constructed
for 6 non-English languages. Specifi-
cally, we probe each layer of a multiple
monolingual RNN-based ELMo models,
the transformer-based BERT’s cased and
uncased multilingual variants, and a vari-
ant of BERT that uses a cross-lingual mod-
elling scheme (XLM).

1 Introduction

Recent trends in NLP have demonstrated the
utility of pre-trained deep contextual representa-
tions in numerous downstream NLP tasks, where
they have almost consistently resulted in signifi-
cant performance improvements. Detailed evalu-
ations have naturally followed: these have either

been follow-up works to papers describing contex-
tual representation systems, such as Peters et al.
(2018b), or novel works evaluating a broad class
of encoders on a broad variety of tasks (Perone
et al., 2018). This paper is an example of the lat-
ter sort; we perform a comprehensive, large-scale
evaluation of what linguistic phenomena these se-
quential encoders capture across a diverse set of
languages. This has often been referred to in
the literature as probing; we use this terminology
throughout this work.

Briefly, our goals are to probe our encoders in
a multilingual setting – i.e., we use a series of
probing tasks to quantify what sort of linguistic
information our encoders retain, and how this in-
formation varies across language, across encoder,
and across task. As such, our experiments do not
attempt to attain ‘state-of-the-art’ results; instead,
we attempt to use a comparable experimental set-
ting across each experiment, to quantify differ-
ences between settings rather than absolute results.

In Section 2, we describe prior work in multiple
strands of research: specifically, on deep neural
pre-training, on multilingualism in pre-training,
and on evaluation. Section 3 describes both the
linguistic features we probe our representations
for, and how we generated our probing corpus. In
Section 4, we describe and motivate our choice of
encoders, as well as describe our infrastructural
details. The bulk of our contribution is in Sec-
tion 5, where we describe and analyse our results.
Finally, we conclude with a discussion of the im-
plications of these results and future work in Sec-
tion 6.



2 Background

2.1 Deep pre-training

A watershed moment in NLP has been the re-
cent innovation spree in deep pre-training; it has
represented a considerable step up from shallow
pre-training methods, that have been used in NLP
since the introduction of contextual word embed-
ding models such as word2vec (Mikolov et al.,
2013). Whilst deep pre-training has been used
in non-NLP, image-oriented tasks, where the stan-
dard paradigm is to pre-train deep convolutional
networks on datasets like ImageNet (Russakovsky
et al., 2014), and then fine-tune on task-specific
data, their introduction to textual domains has
been considerably slower, yet has been picking up
rapidly in recent years.

An early paper in this theme was CoVe (Mc-
Cann et al., 2017), that pre-trained contextual
encoders on seq2seq machine translation mod-
els. Another earlier seminal work that addressed
numerous technical issues with pre-training
was Howard and Ruder’s ULMFiT (2018). Not
long after, the principle of deep pre-training saw
widespread adoption with ELMo (Peters et al.,
2018a), that consisted of several innovations over
CoVe: critically, the use of an unsupervised (albeit
structured) task – language modelling – for pre-
training, and the use of a linear combination of all
encoder layers, instead of just the top layer. Ar-
chitecturally, ELMo used two-layer bidirectional
LSTMs along with character-level convolutions,
to model word probabilities given the history.

With deep pre-training having been established
as a valid strategy in NLP, alternative models with
different underlying architectures were proposed.
The OpenAI GPT (Radford et al., 2018) was one
such model; instead of LSTMs, it used the decoder
of an attention-based transformer (Vaswani et al.,
2017) as its underlying encoder – the justification
being that using the transformer’s encoder would
lead to each token having access to succeeding to-
kens. The GPT also achieved (then) state-of-the-
art results by plugging generated fixed-length vec-
tors into downstream classifiers.

Another system that represented a significant
innovation was BERT (Devlin et al., 2018). BERT
introduced a language modelling variant, dubbed
masked language modelling, that allowed them to
use transformer encoders as their underlying en-
coding mechanism.

2.2 Multilingual pre-training

Multilingual variants of pre-trained encoders
that provide contextual representations for non-
English languages have also been studied; there
is, however, some diversity in precisely how they
are generated.

Che et al. (2018) provide ELMo models (Fares
et al., 2017) for 44 languages; all of these were
trained on data provided as part of the CoNLL
2018 shared task on dependency parsing Univer-
sal Dependencies treebanks (Zeman et al., 2018).
This makes ‘multilingual’ a bit of a misnomer:
whilst this is the most obvious approach to multi-
lingual support, these models are all monolingual.
This also leads to other issues downstream, such
as a complete inability to deal with true multilin-
gual phenomena like code-switching. Throughout
this text, however, when not specifically referring
to ELMo, our use of the term ‘multilingual’ is in-
clusive of ELMo’s quasi-multilingualism.

This is contrasted with BERT’s approach to
(true) multilingualism, which trains a single model
that can handle all languages. The authors use
WordPiece, a variant of BPE (Sennrich et al.,
2016), for tokenisation, using a 110K-size vocabu-
lary, and proceed to train a single gigantic model;
they perform exponentially smoothed weighting
of their data to avoid biasing their model towards
better-resourced languages.

Finally, XLM (Lample and Conneau, 2019) is
another cross-lingual encoder based on BERT that
implements a number of modifications. Along
with BERT’s masked language modeling or Cloze
task-based modelling (Devlin et al., 2018; Taylor,
1953), XLM training uses another similar objec-
tive during training that the authors call transla-
tion language modeling. Here, two parallel sen-
tences are concatenated and words masked in both
source and target sentences words are predicted
using context from both. The authors here also use
their own implementation of BPE – FastBPE, for
which they provide a vocabulary of around 120K

entries. This vocabulary is shared across all of the
languages and thus improves the alignment of em-
bedded spaces, as shown in Lample et al. (2017).

2.3 On evaluation

Evaluation of contextual representations goes be-
yond merely deep representations; not too far in
the past, work on evaluating shallow sentence
representations was encouraged by the release of



the SentEval toolkit (Conneau and Kiela, 2018),
which provided an easy-to-use framework that
sentence representations could be ‘plugged’ into,
for rapid downstream evaluation on numerous
tasks: these include several classification tasks,
textual entailment and similarity tasks, a para-
phrase detection task, and caption/image retrieval
tasks. Relevant to our paper is Conneau et al.’s
(2018a) set of ‘probing tasks’, a variant on the
theme of diagnostic classification (Hupkes et al.,
2017; Belinkov et al., 2017; Adi et al., 2016; Shi
et al., 2016), that would attempt to quantify pre-
cisely what sort of linguistic information was be-
ing retained by sentence representations. Based in
part on Shi et al. (2016), Conneau et al. (2018a)
focus on evaluating representations for English;
they provide Spearman correlations between the
performance of a particular representation mecha-
nism on being probed for specific linguistic prop-
erties, and the downstream performance on a va-
riety of NLP tasks. Along similar lines, and con-
temporaneously with this work, Liu et al. (2019)
probe similar deep pre-trained to the ones we do,
on a set of ‘sixteen diverse probing tasks’. (Ten-
ney et al., 2018) probe deep pre-trained encoders
for sentence structure.

On a different note, Saphra and Lopez (2018)
present a CCA-based method to compare repre-
sentation learning dynamics across time and mod-
els, without explicitly requiring annotated corpora.

A visible limitation of the datasets provided by
these probing tasks is that most of them were cre-
ated with the idea of evaluating representations
built for English language data. Within the realm
of evaluating multilingual sentence representa-
tions, Conneau et al. (2018b) describe the XNLI
dataset, a set of translations of the development
and test portions of the multi-genre MultiNLI in-
ference dataset (Williams et al., 2018). This, in a
sense, is an extension of a predominantly mono-
lingual task to the multilingual domain; the au-
thors evaluate sentence representations derived by
mapping non-English representations to an En-
glish representation space.

2.4 BERTology

Relevant to the probing theme of this paper is the
sudden recent growth in papers studying precisely
what is retained with the internal representations
of pre-trained encoders like BERT. These include,
for instance, analyses of BERT’s attentions heads,

such as Michel et al. (2019), where the authors
prune heads, often reducing certain layers to single
heads, without a significant drop in performance in
certain scenarios. Clark et al. (2019) provide a per-
head analysis and attempt to quantify what infor-
mation each head retains; they discover that spe-
cific aspects of syntax are well-encoded per head,
and find heads that correspond to certain linguis-
tic properties, such as heads that attend to direct
objects of verbs. Other papers provide analyses
of BERT’s layers, such as Tenney et al. (2019),
who discover that BERT’s layers roughly corre-
spond to the notion of the classical ‘NLP pipeline’,
with lower level tasks such as tagging lower down
the layer hierarchy. Hewitt and Manning (2019)
define a structural probe over BERT representa-
tions, that extracts notions of syntax that corre-
spond strongly to linguistic notions of dependency
syntax.

3 Corpora

3.1 Probing

Our data consists of training, development and test
splits for 9 linguistic tasks, that can broadly be
grouped into surface, syntactic and semantic tasks.
These are the same as the ones described in Con-
neau et al. (2018a), with minor modifications. Due
to the differences in corpus domain, we alter some
of their word-frequency parameters. We also ex-
clude the top constituent (TopConst) task; we no-
ticed that Wikipedia tended to have far less diver-
sity in sentence structure than the original Toronto
Books corpus, due to the more encyclopaedic style
of writing. A brief description of the tasks follows,
although we urge the reader to refer to the original
paper for more detailed descriptions.

1. Sentence length: In SentLen, sentences are
divided into multiple bins based on their
length; the job of the classifier is to predict
the appropriate bin, creating a 6-way classifi-
cation task.

2. Word count: In WC, we sample sentences
that feature exactly one amongst a thousand
mid-frequency words, and train the classifier
to predict the word: this is the most ‘difficult’
task, in that it has the most possible classes.

3. Tree depth: The TreeDepth task simply asks
the representation to predict the depth of the
sentence’s syntax tree. Unlike the original



paper, we use the depth the of the dependency
tree instead of the constituency tree.

4. Bigram shift: In BiShift, for half the sen-
tences in the dataset, the order of words in
a randomly sampled bigram is reversed. The
classifier learns to predict whether or not the
sentence contains a reversal.

5. Subject number: The SubjNum task asks the
classifier to predict the number of the sub-
ject of the head verb of the sentence. Only
sentences with exactly one subject (annotated
with the nsubj relation) attached to the root
verb were considered.

6. Object number: ObjNum, similar to the sub-
ject number task, was annotated with the
number of the direct object of the head verb
(annotated with the obj relation).

7. Coordination inversion: In CoordInv, two
main clauses joined by a coordinating con-
junction have their orders reversed, with a
probability of one in two. Only sentences
with exactly two top-level conjuncts are con-
sidered.

8. (Semantic) odd man out: SOMO, one of the
more difficult tasks in the collection, replaces
a randomly sampled word with another word
with comparable corpus bigram frequencies.

9. Tense prediction: The Tense prediction asks
the classifier to predict the tense of the main
verb: we compare the past and present tenses.

3.2 Data

Languages
Our choice of languages was motivated by three
factors: i) the availability of a Wikipedia large
enough to extract data from; ii) the availability of a
reasonable dependency parsing model, and iii) ty-
pological diversity. The former, in particular, was
a bit of a restriction, since not all sentences were
valid candidates for extraction per task. Our fi-
nal set of languages include an additional corpus
for English, as well as French, German, Spanish,
Russian, Turkish and Finnish. Whilst not nearly
representative of the diversity of world languages,
this selection includes morphologically agglutina-
tive, fusional and (relatively) isolating languages,
and it includes two scripts, Latin and Cyrillic.

The languages also represent three families (Indo-
European, Turkic and Uralic).

We build our probing datasets using the relevant
language’s Wikipedia dump as a corpus. Our mo-
tivation for doing so was that it a freely available
corpus for numerous languages, large enough to
extract the sizeable corpora that we need. Specif-
ically, we use Wikipedia dumps (dated 2019-02-
01), which we process using the WikiExtractor
utility1.

Preprocessing

We use the Punkt tokeniser (Kiss and Strunk,
2006) to segment our Wikipedia dumps into dis-
crete sentences. For Russian, which lacked
a Punkt tokenisation model, we used the UD-
Pipe (Straka and Straková, 2017) toolkit to per-
form segmentation.

Having segmented our data, we used the
Moses (Koehn et al., 2007) tokeniser for the ap-
propriate language, falling back to English tokeni-
sation when unavailable.

Next, we obtained dependency parses for our
sentences, again using the UDPipe toolkit’s pre-
trained models, trained on Universal Dependen-
cies treebanks (Nivre et al., 2015). We then pro-
cessed these dependency parsed corpora to ex-
tract the appropriate sentences; while in princi-
ple, each task was meant to have 120K sentences,
with 100K/10K/10K training/validation/test splits,
often, for the rarer linguistic phenomena, we ran
out of source data, in particular with Turkish and
Finnish, although to a smaller extent with Russian
as well. In these situations, we ensured an equiva-
lent split ratio.

Our use of non-gold-standard dependency
parses implies inaccuracies that, in principle,
would propagate to our training data. A valid
counterargument, however, is that we do not rely
on complete parse accuracies for all our tasks; sev-
eral tasks do not require dependency or POS anno-
tation, and the ones that do rely on a fixed subset
of dependency relations, such as nsubj or obj.
Having said that, we do acknowledge the diver-
gences in parsing performance across language;
unfortunately, given the substantial corpus sizes
these experiments require, we could not use gold-
standard parsed corpora.

1https://github.com/attardi/
wikiextractor/

https://github.com/attardi/wikiextractor/
https://github.com/attardi/wikiextractor/


4 Implementation

4.1 Encoders

We probe several popular pre-trained encoders (or,
specifically, their multilingual variants). These in-
clude:

ELMo, monolingual We use Che et al.’s (2018)
pre-trained monolingual ELMo models for
each of our languages. Training was simi-
lar to the original English language ELMo,
but allows for Unicode, and uses a sample
softmax (Jean et al., 2014) to deal with large
vocabularies. We probed four variants of
each ELMo model - the character embed-
dings layer, the two LSTM layers, and an
average of all three. For obtaining a fixed-
length sentence representation, we use av-
erage pooling over the sequence of hidden
states.

BERT We use the two multilingual variants -
cased and uncased. Both variants have 12
layers, 768 hidden units, 12 heads and 110M

parameters; the former includes 104 lan-
guages and fixes normalisation issues, whilst
the latter includes 102 languages. For further
classification, we use the first hidden state,
represented by the [CLS] token.

XLM We probe only one variant of this encoder
- i.e., the models fine-tuned on XNLI (Con-
neau et al., 2018b) data. Due to there being
no XNLI data for Finnish, we do not probe
our Finnish dataset with XLM. Unlike BERT,
XLM uses 1024 hidden units and 8 heads.

Unfortunately, all our encoders did include
Wikipedia dumps in their training data. Given that
pretrained encoders tend to use as much easily ac-
cessible data as possible in pre-training, however,
it is difficult to avoid using a completely unseen
corpus for probing task extraction.

4.2 Implementation

Our probing procedure for each of our languages
and encoders is relatively similar: we use a multi-
layer perceptron based classifier to assign the ap-
propriate class label to each input sentence. Dur-
ing training, the encoders remain static, with all
learning restricted to the classifier. In an attempt
to avoid excessively complex classifiers, and to en-
sure consistency across tasks and languages, we

use predetermined fixed hyperparameters – specif-
ically, a sigmoid activation function, on top of a
size 50 dense layer. We use a training batch size
of 32, optimised using Adam (Kingma and Ba,
2014), and train for 10 epochs, allowing for early
stopping.

We implement our system using the AllenNLP
toolkit (Gardner et al., 2018), which crucially pro-
vides the ability to use the appropriate tokenisation
schema, along with the appropriate vocabulary, for
each encoder. Training and evaluation were car-
ried out on NVIDIA RTX 2080 Ti GPUs, with
10GiB GPU memory.

5 Results

Due to our large experiment space, there are sev-
eral dimensions along which our results can be
analysed and discussed. For ease of analysis, all
our figures are presented as heatmaps.

We have presented our results in two ways, for
easy visualisation. The first of these is dividing
them up by task, as in Figure 1. We present an
alternative set of results for three of our encoders,
in Figure 2.

5.1 Encoder

An observation that instantly stands out is the sig-
nificant difference in performance on WC: consis-
tently, across every language, all our transformer-
based architectures see results very close to 0. Fur-
ther, whilst not instantly visible in Figure 2, a
quick look at Figure 1 shows that the same ap-
pears to hold (albeit to a lesser extent) for SentLen,
TreeDepth and BiShift, all of which are either
surface or syntactic phenomena. This appears to
heavily imply that recurrent, sequential processing
appears to retain lower level linguistic phenomena
better than self-attentive mechanisms (that do not
see the same drop in informativity for semantic
tasks). This is perhaps a bit easy to justify with
SentLen, which is a phenomenon that is directly
proportional to recurrence depth.

The next phenomenon of interest is the differ-
ence between each of ELMo’s layers. Interest-
ingly, these do not appear to be as drastic as one
would imagine, given the differences in perfor-
mance on downstream tasks. The difference be-
tween raw word representations and actual con-
textual representations is fairly noticeable, partic-
ularly on the strongly syntactic BiShift. How-
ever, the differences between higher layers is rela-



Figure 1: Detailed results per task, per language per encoder. Each task’s result heatmap has its own
scale. All results mentioned in this paper refer to classification accuracies in [0.0, 1.0]. Henceforth, ‘co’
refers to probing results on Conneau et al.’s (2018a) original corpus.

tively murkier, and whilst the average of the three
does appear to represent some phenomena better
(such as CoordInv), it isn’t clear that this differ-
ence is meaningful. Notably, SentLen appears
to be poorly represented in higher layers, which
ties in with other analyses of ELMo (Peters et al.,
2018b), that imply that higher layers are likelier to
learn more semantic features.

BERT’s cased variant appears to retain informa-
tion slightly better than the uncased one, which is
in line with the authors’ descriptions of their own
models.

Finally, and perhaps most interestingly, we turn
our attention towards XLM. Despite being based
on BERT (and indeed showing similar patterns
in performance), XLM appears to perform a lot
worse than all our other encoders on virtually ev-
ery task. It is not immediately clear why: how-
ever, given that this drop in performance is visi-
ble in every language, our conjecture is that due
to the translation-based modelling employed by
XLM, the encoder does indeed succeed at learn-
ing language-independent representations, or ‘uni-

versal’ representations. However, this universal-
ity comes at a cost: in an attempt to adequately
represent a variety of typologically diverse lan-
guages, XLM appears to lose its ability to retain
specific linguistic phenomena pertaining to spe-
cific languages; in a sense, it is incapable of build-
ing a representation for a language that adequately
captures a specific phenomenon in that language
and no other. This follows intuitively from the
method used training on the TLM objective: the
authors concatenate aligned parallel sentences and
predict masked words in the source and the tar-
get sentence, using context from both sentences
at the same time to predict each masked word.
This is likely to have had a detrimental effect on
XLM’s ability to retain characteristics specific to
each language. In Figure 3, we show the relative
performance of BERT and XLM per probing task.
There is a clear trend towards BERT’s enhanced
retention of linguistic features being less promi-
nent for the more semantic tasks, which fits our
hypothesis, as semantics are likelier to hold cross-
linguistically.



Figure 2: Results for select encoders, per language per task. All results use the same scale, [0.0, 1.0].

Figure 3: BERT (cased) scores divided by the cor-
responding XLM scores. Tasks are ordered, from
surface to syntax to semantic level tasks.

A point to be made here is that despite Sub-
jNum, ObjNum and Tense being classified as se-
mantic tasks, it isn’t clear that they are truly be-
ing probed for semantic information: all three
phenomena tend to be visible with morphologi-
cal marking. This gives us an alternative justifica-
tion for XLM’s relative improvement in retention:
XLM is likely capable of storing each language’s
individual morphological information in different
internal subspaces de, as each language is likely to
reflect morphology purely orthographically, and in
mutually exclusive ways.

Our observations on the differences between en-
coders are also easily visible in Figure 4, where
multiple ‘belts’ of varying performances emerge.

5.2 Language

To motivate one of the main focuses of this paper
– our analysis of our results along linguistic lines
– we present Figure 5, which displays what one
might call the net ‘informativity’ of an encoder,
i.e. an average of how much information each en-
coder retains averaged over tasks. The most no-
ticeable effect here is the drop in informativity for
Russian and Turkish. While this is perhaps under-
standable for Turkish – which has smaller prob-
ing corpora, and a less reliable Wikipedia than the
other languages – Russian’s opaqueness cannot be



Figure 4: Linguistic information retained per en-
coder, per task; scores are averaged over language.

as easily explained away, particularly when con-
trasted with Finnish, which tends to have fewer re-
sources.

We further introduce Figure 6, which displays
the averaged results of three systems – ELMo’s
multilayer variant, BERT’s cased variant and (ab-
sent for Finnish) XLM. Most linguistic differences
appear to be clustered in the semantic part of this
heatmap. There are numerous possible factors that
could explain these divergences, not the least of
which is the actual probing corpus itself: however,
we attempt to provide a justification, from a typo-
logical perspective, for some of these results.

When averaged across encoders, the Tense task
stands out as fairly easy to probe for all languages.
It thus seems that information about verbal tempo-
ral properties is retained in the sentence represen-
tation. For the tasks of subject and object number,
however, we observe clear differences between the
languages. Here, French and Spanish appear to
be somewhat easier to probe than other languages.
We hypothesise that this is due to both languages
marking nominal number, not just with verb agree-
ment, but also with plural articles, resulting in rep-
resentations that are more informative regarding
number. Contrast this with English and German,
which either do not have plural articles, or have
plural articles that morphologically overlap with
non-plural forms, or with Russian, that tends to
avoid articles in general.

Other interesting observations are German’s rel-
ative ability at retaining information on CoordInv
and Tense, as well as Finnish’s extraordinarily
high performance on Tense. Further, SentLen ap-
pears to be retained better, counter-intuitively, in
Russian, Turkish and Finnish; a brief look at Fig-

Figure 5: Net encoder ‘informativity’ per lan-
guage; results averaged over all tasks.

ure 1 shows that, interestingly, this is likely due to
BERT.

Finally, we note that our results do not seem
to indicate that English is somehow better repre-
sented in our multilingual systems, nor does it ap-
pear to perform significantly better than other lan-
guages in general, indicating that none of our mod-
els are ‘learning’ English first and then adapting to
other languages.

5.3 Task

From a monolingual perspective, most of what
needs to be said regarding the choice of probing
tasks has already been said in the original (Con-
neau et al., 2018a). There are however several dif-
ferences, induced both by our modifications to the
original framework, and by our corpus’s multilin-
gualism.

The first of these is the apparently consistent
differences in performance on certain tasks which
include, amongst others, CoordInv, where our
variant appears to be more easily retained than the
original. This can be explained away by minor is-
sues we faced during implementation, using de-
pendency trees instead of constituency trees. Due
to more complicated representation of conjuncts in
UD-style dependency trees, some of our sentences
had issues with using the appropriate casing after
swapping conjuncts, as well as ensuring consistent
punctuation. While we attempted to avoid these by



writing filtering rules, these were imperfect, and it
is likely that stray punctuation and the like might
have informed our representations about the con-
juncts being swapped, in some instances.

Another task with minor differences is our
implementation of SOMO; we attribute this to
not being able to accurately reproduce Conneau
et al.’s (2018a) modified corpus-frequency range
(40-400) to adequately fit all our corpora.

We note that there do not appear to be signifi-
cant differences in the TreeDepth task, despite our
using dependency trees instead of constituency,
and despite our tree depth/sentence length de-
correlation procedure being markedly simpler.

6 Discussion

6.1 Implications

Having elaborated our results, it becomes crucial
to contextualise their importance. ‘Probing’ an en-
coder, or more correctly, using diagnostic classi-
fiers to attempt to quantify what information an en-
coder stores, appears to be a reasonable approach
to qualifying this information. However, there has
been some critique of this approach. To para-
phrase Saphra and Lopez (2018), the architecture
of a diagnostic classifier does affect the perfor-
mance of a probing task; further, lower layers of
encoders may represent information in ways de-
signed to be picked up on by their own higher lay-
ers; this might prove difficult for simple classifiers
to truly probe.

This is an excellent critique of the principle
using absolute probing performance, or absolute
numbers representing performance on an abstract
insight task, as a yardstick. Critically, this work
is focussed, both practically and in principle, on
elucidating relative results, in a wide space of lan-
guages and encoders. The relative underparame-
terisation of the classifier and the use of one con-
stant set of hyperparameters across experiments is
an attempt to minimise the relative interference of
the classifier. i.e., our goal is to keep the classi-
fier’s interference – its lens – as consistent as pos-
sible.

6.2 Future work

One potential strand of research relates directly
to the tasks themselves: our choice of tasks was
fairly restrictive, and does not include many tasks
that are truly semantic, which does not provide us
with enough information to draw conclusions sim-

Figure 6: Linguistic insight per language per task,
averaged over one variant of every encoder: multi-
layer ELMo, cased BERT, and XLM (bar Finnish).

ilar to Liu et al. (2019), which is that pretrained
models encode stronger syntax than semantics. An
obvious goal, therefore, is the more careful de-
sign of tasks, particularly within a multilingual
context: the tasks proposed by Liu et al. (2019)
and Tenney et al. (2018) are not strictly easy to
motivate cross-linguistically due to the burden of
annotation. This could include more semantic-
level probing by means of existing cross-lingual
semantic resources, such as the Parallel Meaning
Bank (Abzianidze et al., 2017).

References
Lasha Abzianidze, Johannes Bjerva, Kilian Evang,

Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The Par-
allel Meaning Bank: Towards a Multilingual Cor-
pus of Translations Annotated with Compositional
Meaning Representations. arXiv:1702.03964 [cs].
ArXiv: 1702.03964.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2016. Fine-grained Anal-
ysis of Sentence Embeddings Using Auxiliary Pre-
diction Tasks. arXiv:1608.04207 [cs]. ArXiv:
1608.04207.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do Neural
Machine Translation Models Learn about Morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 861–872, Vancouver,
Canada. Association for Computational Linguistics.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,

http://arxiv.org/abs/1702.03964
http://arxiv.org/abs/1702.03964
http://arxiv.org/abs/1702.03964
http://arxiv.org/abs/1702.03964
http://arxiv.org/abs/1608.04207
http://arxiv.org/abs/1608.04207
http://arxiv.org/abs/1608.04207
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080


and Ting Liu. 2018. Towards Better UD Parsing:
Deep Contextualized Word Embeddings, Ensemble,
and Treebank Concatenation. arXiv:1807.03121
[cs]. ArXiv: 1807.03121.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Alexis Conneau and Douwe Kiela. 2018. SentE-
val: An Evaluation Toolkit for Universal Sentence
Representations. arXiv:1803.05449 [cs]. ArXiv:
1803.05449.

Alexis Conneau, German Kruszewski, Guillaume
Lample, Loc Barrault, and Marco Baroni. 2018a.
What you can cram into a single vector: Prob-
ing sentence embeddings for linguistic properties.
arXiv:1805.01070 [cs]. ArXiv: 1805.01070.

Alexis Conneau, Guillaume Lample, Ruty Rinott,
Adina Williams, Samuel R. Bowman, Holger
Schwenk, and Veselin Stoyanov. 2018b. XNLI:
Evaluating Cross-lingual Sentence Representations.
arXiv:1809.05053 [cs]. ArXiv: 1809.05053.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Murhaf Fares, Andrey Kutuzov, Stephan Oepen, and
Erik Velldal. 2017. Word vectors, reuse, and replica-
bility: Towards a community repository of large-text
resources. In Proceedings of the 21st Nordic Con-
ference on Computational Linguistics, pages 271–
276, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A Deep Semantic Natural Language Pro-
cessing Platform. arXiv:1803.07640 [cs]. ArXiv:
1803.07640.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
arXiv:1801.06146 [cs, stat]. ArXiv: 1801.06146.

Dieuwke Hupkes, Sara Veldhoen, and Willem
Zuidema. 2017. Visualisation and ’diagnos-
tic classifiers’ reveal how recurrent and recur-
sive neural networks process hierarchical structure.
arXiv:1711.10203 [cs]. ArXiv: 1711.10203.

Sbastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On Using Very Large
Target Vocabulary for Neural Machine Translation.
arXiv:1412.2007 [cs]. ArXiv: 1412.2007.

Diederik P. Kingma and Jimmy Ba. 2014.
Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs]. ArXiv: 1412.6980.

Tibor Kiss and Jan Strunk. 2006. Unsupervised mul-
tilingual sentence boundary detection. Computa-
tional Linguistics, 32(4):485–525.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the associ-
ation for computational linguistics companion vol-
ume proceedings of the demo and poster sessions,
pages 177–180.

Guillaume Lample and Alexis Conneau. 2019.
Cross-lingual Language Model Pretraining.
arXiv:1901.07291 [cs]. ArXiv: 1901.07291.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. CoRR, abs/1711.00043.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019. Lin-
guistic Knowledge and Transferability of Contextual
Representations. page 22.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in Translation: Con-
textualized Word Vectors. arXiv:1708.00107 [cs].
ArXiv: 1708.00107.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Joakim Nivre, Željko Agić, Maria Jesus Aranzabe,
Masayuki Asahara, Aitziber Atutxa, Miguel Balles-
teros, John Bauer, Kepa Bengoetxea, Riyaz Ah-
mad Bhat, Cristina Bosco, Sam Bowman, Giuseppe
G. A. Celano, Miriam Connor, Marie-Catherine
de Marneffe, Arantza Diaz de Ilarraza, Kaja Do-
brovoljc, Timothy Dozat, Tomaž Erjavec, Richárd
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