
Multiclass Text Classification on Unbalanced, Sparse and Noisy Data
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Abstract

This paper discusses methods to improve
the performance of text classification on
data that is difficult to classify due to a
large number of unbalanced classes with
noisy examples. A variety of features
are tested, in combination with three dif-
ferent neural-network-based methods with
increasing complexity. The classifiers
are applied to a songtext–artist dataset
which is large, unbalanced and noisy. We
come to the conclusion that substantial
improvement can be obtained by remov-
ing unbalancedness and sparsity from the
data. This fulfils a classification task
unsatisfactorily—however, with contem-
porary methods, it is a practical step to-
wards fairly satisfactory results.

1 Introduction

Text classification tasks are omnipresent in natu-
ral language processing (NLP). Various classifiers
may perform better or worse, depending on the
data they are given (eg. Uysal and Gunal, 2014).
However, there is data where one would expect to
find a correlation between (vectorised) texts and
classes, but the expectation is not met and the clas-
sifiers achieve poor results. One example for such
data are songtexts with the corresponding artists
being classes. A classification task on this data is
especially hard due to multiple handicaps:

First, the number of classes is extraordinarily
high (compared to usual text classification tasks).
Second, the number of samples for a class varies
between a handful and more than a hundred. And
third, songtexts are structurally and stylistically
more diverse than, e.g., newspaper texts, as they
may be organised in blocks of choruses and verses,
exhibit rhyme, make use of slang language etc.
(cf. Mayer et al., 2008). In addition, we try to

predict something latent, since there is no direct
mapping between artists and their songtexts. A lot
of the texts are not written by the singers them-
selves, but by professional songwriters (Smith
et al., 2019, p. 5). Hence the correlation that a
classifier should capture is between songtexts that
the writers think to fit a specific artist and the artist.
All these points make the task difficult; still, it is
a task needed for nowadays’ NLP systems, e.g., in
a framework that suggests new artists to a listener
based on the songtexts s/he likes. Thus, to tackle
the challenges given is a helpful step for any task
in the field of NLP that might come with similarly
difficult data.

For the artist classification, we investigate three
neural-network-based methods: a one-layer per-
ceptron, a two-layer Doc2Vec model and a multi-
layer perceptron. (A detailed description of the
models shall follow in section 2.) Besides the
model, the representation of the instances in a fea-
ture space is important for classification, thus we
also aim to find expressive features for the partic-
ular domain of songtexts. (See section 4 for a list
of our features.)1

2 Methods

The following sections shall provide an overview
of our classifiers in order of increasing complexity.

2.1 Perceptron

A perceptron is a very simple type of neural net-
work that was first described in Rosenblatt (1958).
It contains only one layer, which is at the same
time the input and output layer. The input is a
feature vector ~x extracted from a data sample x.
Every possible class y ∈ Y is associated with a
weight vector ~wy. A given sample x is classified
as ŷx as follows:

1The code will be made available at https://
github.com/ebaharilikult/DL4NLP.



ŷx = argmax
y∈Y

~x · ~wy (1)

During training, every training sample is clas-
sified using the perceptron. If the classification is
incorrect, the weights of the incorrectly predicted
class are decreased, whereas the weights of the
class that would have been correct are reinforced.

Additions to this basic system include shuffling
of the training data, batch learning and a dynamic
learning rate. The shuffling of the training data
across multiple epochs shall prevent the order of
the samples from having an effect on the learn-
ing process. Batch learning generally improves
the performance of a perceptron (e.g. McDonald
et al., 2010); hereby all updates are jointly per-
formed after each epoch instead of each sample.
This removes a strong preference for the last seen
class if the information in the features of multiple
samples overlaps greatly. A dynamic learning rate
improves the convergence of the weights. It gives
updates that happen later during training less im-
pact and allows a closer approximation to optimal
weights.

2.2 Doc2Vec

Doc2Vec (Le and Mikolov, 2014) is a two-layer
neural network model which learns vector repre-
sentations of documents, so-called paragraph vec-
tors. It is an extension of Word2Vec (Mikolov
et al., 2013) which learns vector representations
of words. Thereby, context words, represented
as concatenated one-hot vectors, serve as input
and are used to predict one target word. After
training, the weight matrix of the hidden layer
becomes the word matrix, containing the well-
known Word2Vec word embeddings.

The extension in Doc2Vec is that a unique doc-
ument/paragraph id is appended to each input n-
gram, as if it was a context word. Since paragraph
ids have to be different from all words in the vo-
cabulary, the weight matrix can be separated into
the word matrix and the paragraph matrix, the lat-
ter containing document embeddings.2

In a document classification task, labels instead
of paragraph ids are used. By doing so, the

2The described version of Word2Vec and Doc2Vec is
commonly referred to as “continuous bag of words” (DBOW)
model. If the input and output are swapped, i.e. a single word
(Word2Vec) or document (Doc2Vec) is used to predict several
context words, the architecture is called “skip-gram” (SG) or
“distributed memory” (DM) model, respectively.

Doc2Vec model learns vectors of each label in-
stead of each document. If one wants to predict the
label of an unseen document, a vector representa-
tion for this document needs to be inferred first.
Therefore, a new column/row is added to the para-
graph matrix. Then the n-grams of the document
are iteratively fed to the network (as in training).
However, the word matrix as well as the weight
matrix of the output layer are kept fixed, and so
only the paragraph matrix is updated. The result-
ing paragraph vector for the unseen document is
finally compared to the paragraph vectors repre-
senting labels; and the label of the most similar
vector is returned as the prediction.

2.3 MLP
A multi-layer perceptron (Beale and Jackson,
1990), also referred to as feed forward neural net-
work, is a deep neural network consisting of mul-
tiple hidden layers with neurons which are fully
connected with the neurons of the next layer, and
an output layer with as many neurons as classes.
The number of layers and the number of neurons
in each hidden layer depends on the classification
tasks and are therefore hyperparameters. For mul-
ticlass classification, the softmax function is used
in the output layer. During training, the back-
propagation learning algorithm (Rumelhart et al.,
1985) based on the gradient descent algorithm, up-
dates the weights and reduces the error of the cho-
sen cost function, such as mean squared error or
cross-entropy.

To prevent overfitting in neural networks,
dropout (Srivastava et al., 2014) is commonly
used. It omits hidden neurons with a certain prob-
ability to generalise more during training and thus
enhances the model.3

3 Data

We use a dataset of 57,647 English songtexts with
their corresponding artist and title, which has been
downloaded from Kaggle4. The data was shuffled
uniformly and 10% were held out for validation
and test set, respectively.

There are 643 unique artists in the data. Table 1
shows the distribution of artists and songtexts for

3It should be noted here that advanced deep learning mod-
els such as CNNs and RNNs exist and have been successfully
used in text classification tasks (Lee and Dernoncourt, 2016),
but have not been used in the context of this work and are
therefore not explained in detail.

4https://www.kaggle.com/mousehead/
songlyrics



Dataset Artists Songs Avg. songs

Training 642 46,120 71.8 (44.0)
Validation 612 5,765 9.4 (5.7)
Test 618 5,765 9.3 (6.0)

Table 1: Number of unique artists (classes), num-
ber of songtexts and average number of songtexts
per artist (standard deviation in parentheses) for
each dataset.

Figure 1: A histogram showing the distribution of
songtexts in the training set.

each subset. The training set contains most of
the unique artists (642) whereas less artists appear
in the validation (612) and test set (618). Also,
the standard deviation of average songs per artists
is relatively high (i.e. more than half the aver-
age) which indicates that the number of songs per
artists is spread over a large range.

The distribution of songs per artists in the train-
ing set can be seen in Figure 1. It shows similar
counts for classes (artists) with many and classes
with only a few samples (songtexts), i.e. unbal-
anced training data. The bandwidth goes from one
artist with 159 songs to four artists with only one
song which also illustrates the sparsity for some
classes.

Besides the issues caused by the distribution
of songtexts per artist, the quality of the texts is
less than perfect. Nonsense words and sequences,
such as tu ru tu tu tu tu, as well as spelling varia-
tions, such as Yeaaah, Hey-A-Hey and aaaaaaalll-
lllright!, are very common.

4 Feature Extraction

For both the (single-layer) perceptron and the
multi-layer perceptron we use the same prepro-
cessing and features which are described below.
(The Doc2Vec model uses its own integrated to-
keniser and Word2Vec-based features.)

The songtexts are tokenised by whitespace.

Within a token, all non-initial letters are lower-
cased and sequences of repeating letters are short-
ened to a maximum of three. To further re-
duce noise, punctuation is removed. The texts
are tagged with parts-of-speech (POS) using the
Apache OpenNLP maximum entropy tagger5.

Stylometric features Generic information
about the text, i.e. the number of lines, the number
of tokens, the number of tokens that appear only
once, the number of types and the average number
of tokens per line.

Rhyme feature Number of unique line endings
(in terms of the last two letters), normalised by the
number of lines. This should serve as a simple
measure for how well the lines rhyme.

Word count vectors Every unique word in the
training corpus is assigned a unique dimension. In
each dimension, the number of occurrences of the
word in the sample are denoted. Term-frequency
(tf) weighting is implemented, but can be switched
on and off. As a minimal variant, only nouns can
be taken into account; in this case we speak of
noun count vectors.

POS count vectors The same as word count
vectors after replacing all words with their POS
tag.

Word2Vec embeddings 300-dimensional em-
beddings created from the Google news corpus.6

The embedding of a text is hereby defined as the
average of the embeddings of all the words in the
text. As a minimal variant, only nouns can be
taken into account.

Bias A feature with a constant value of 1 (to
avoid zero vectors as feature vectors).

5 Experiments

This section lists the concrete parameter settings
of the methods described in section 2. Since our
models can only predict classes which have been
encountered during training, only the 612 artists
occurring in all subsets are kept for all evalua-
tions. For another series of experiments, only the
40 unique artists with more songs than 140 in the
training set are kept to reduce the impact of unbal-
ancedness and sparsity (numbers in Table 2).

5https://opennlp.apache.org/docs/1.8.
0/manual/opennlp.html\#tools.postagger

6GoogleNews-vectors-negative300.bin.gz from https:
//code.google.com/archive/p/word2vec/



Dataset Artists Songs Avg. songs

Training 40 5,847 146.2 (4.6)
Validation 40 646 16.2 (3.6)
Test 40 714 17.9 (5.0)

Table 2: Number of unique artists (classes), num-
ber of songtexts and average number of songtexts
per artist (standard deviation in parentheses) for
each dataset, keeping only the 40 unique artists
with more songs than 140 in the training set.

5.1 Experimental Settings

Perceptron We train and test two versions of
the perceptron. The minimal version (Perceptron)
only uses noun count vectors without tf-weighting
and the bias. The maximal version (Perceptron+)
uses all features. All add-ons described in sec-
tion 2.1 (shuffling, batch learning, dynamic learn-
ing rate) are used for both versions since they led
to an increasing performance on the validation set
in preliminary tests. For the decay of the learning
rate, a linear decrease starting from 1 and ending
at 1

number of epochs is chosen.

Doc2Vec For the Doc2Vec implementation, we
use deeplearning4j7 version 0.9. The hyper-
paramters are a minimum word frequency of 10,
a hidden layer size of 300, a maximum window
size of 8, and a learning rate starting at 0.025 and
decreasing to 0.001. Tokenisation is performed by
the incorporated UIMA tokeniser. The model is
trained for 100 epochs with batch learning.8

MLP The implementation of MLP and MLP+ is
done with Keras (Chollet et al., 2015). MLP+ uses
all feature groups from section 4 and one bias fea-
ture for every group. The MLP+ model is shown in
Figure 2. Each feature group uses multiple stacked
layers that are then merged with a concatenation
layer. The sizes of the dense layers are manually
selected by trial and error. Several dropout layers
with a constant probability of 0.2 are included. In
contrast, MLP uses only the noun count vectors
(as Perceptron) and thus only one input branch.

For both models, Adadelta, an optimisation

7See https://deeplearning4j.org/docs/
latest/deeplearning4j-nlp-doc2vec for a
quick example.

8Since deeplearning4j does not document the possibility
to get intermediate evaluation results during training, 10 mod-
els are trained separately for 10, 20, 30 etc. epochs to obtain
data points for the learning progress analysis.

Figure 2: Model of the MLP+ model: Layers
with corresponding number of neurons. The input
layers correspond to the following feature groups
(f.l.t.r.): word count vectors, stylometric features,
rhyme feature, POS count vectors, Word2Vec em-
beddings.

function with adaptive learning rate, a batch size
of 32 and categorical cross-entropy as the loss
function are used. For the activation functions,
rectified linear units are used in the hidden layer
and softmax in the output layer. The model trains
for 250 epochs and stores the weights that led to
the best accuracy on the validation set through a
checkpoint mechanism.

5.2 Evaluation measures

Given a (test) set X , each sample x ∈ X has a
class yx and a prediction ŷx. Based on the predic-
tions, we can calculate class-wise precision (P ),
recall (R) and F -score as follows:

P (y) =
|{x ∈ X | yx = y ∧ yx = ŷx}|

|{x ∈ X | ŷx = y}|
(2)



R(y) =
|{x ∈ X | yx = y ∧ yx = ŷx}|

|{x ∈ X | yx = y}|
(3)

F (y) =
2 · P (y) ·R(y)

P (y) +R(y)
(4)

The macro-averaged F -score of all classes is
the average of the class-wise F -scores:

Fmacro =
1

|Y |
·
∑
y∈Y

F (y) (5)

For the overall precision and recall, the nom-
inators and denominators are summed up for all
y ∈ Y , resulting in:

P = R =
|{x ∈ X | yx = ŷx}|

|{x ∈ X}|
(6)

And the formula for the micro-averaged F -
score:

Fmicro =
2 · P ·R
P +R

= P = R (7)

The identity of overall P and R causes their
identity with Fmicro. This measure is identical
with the overall accuracy (correct predictions di-
vided by all predictions). Since Fmacro gives ev-
ery class the same weight, but we deal with an un-
balanced dataset, we choose Fmicro as evaluation
measure and only show Fmacro in some graphs for
comparison.

5.3 Results
Table 3 shows the micro-averaged F -score for all
models. MLP+ performs best, followed by Per-
ceptron and Doc2Vec. The use of additional fea-
tures significantly decreases the performance of
the perceptron (Perceptron+), but increases it for
the multi-layer network (MLP+). This observation
is discussed in section 5.4.

Figures 3–5 show the performance of Percep-
tron, Doc2Vec and MLP+ in dependence of the
number of training epochs. The Perceptron (Fig-
ure 4) shows a generally increasing learning curve,
i.e. more epochs lead to better results. Peaks like
the one after the 51st epoch are ignored since the
model uses a fixed number of 100 training epochs.
Doc2Vec (Figure 5) reaches its best performance
with 20 epochs and does not show any learning
progress after that, even if trained for 100 epochs.
The MLP+ model (Figure 3) exhibits increasing
performance until around 100 training epochs and

Model MST
final best
F ep. F ep.

Perceptron 0 .066 100 .069 94
Perceptron+ 0 .003 100 .006 23
Doc2Vec 0 .032 100 .033 70
MLP 0 .023 97 .025 114
MLP+ 0 .079 97 .089 80

Perceptron 140 .146 100 .160 51
Perceptron+ 140 .021 100 .055 54
Doc2Vec 140 .101 100 .120 20
MLP 140 .050 201 .088 46
MLP+ 140 .182 105 .193 109

Table 3: Micro-averaged F -score for each model
on the test set after training (final) and during
training (best), together with the corresponding
training epochs. Lower part: only artists with
more songs than (MST) 140 are kept in the train-
ing and the test set.

then reaches a plateau. Since the model uses that
number of epochs which works best on the valida-
tion set (i.e. 105), it misses the best performance
at the 109th epoch but gets a final score close to it.

5.4 Error Analysis

In this section, we shall focus on the confu-
sion matrices produced by our three main models
which are depicted in Figure 6 and to be read as
follows: The x-axis and the y-axis represent artists
in the same order (labels are omitted due to leg-
ibility). Each cell indicates how often the artist
on the x-axis was classified as the artist on the
y-axis (darker colours are higher numbers). The
cells on the main diagonal correspond to the cases
where a class was classified correctly hence a vis-
ible diagonal correlates with good results. Darker
cells outside of the diagonal are significant mis-
classifications9 and might be interesting to look
into.

As is clearly visible in Figure 6 (a), something is
wrong with the predictions of the Doc2Vec model.
There are hints of a diagonal showing at the top-
left—however, there are entire columns of dark
colour. This means that there are classes that are
almost always predicted, no matter which class a
sample actually belongs to. Interestingly, we ob-

9Such mis-classifications will be denoted as outliers in the
following, since we are talking about the correlation of the
axes here.



Figure 3: Micro-averaged (above) and macro-averaged (below) F -score of the MLP+ model on the test
set (MST=140) after each training epoch.

Figure 4: Micro-averaged (above) and macro-
averaged (below) F -score of the Perceptron model
on the test set (MST=140) after each training
epoch.

served the same behaviour with our perceptron im-
plementation in preliminary tests which changed
when we started using batch learning. However,
our Doc2Vec implementation already uses batch
learning and mini-batch learning did not improve
the performance in postliminary tests.

Figure 6 (b) shows that the perceptron performs
well on most classes. However, there are very few
classes where it actually recognises (almost) all of
the samples. There are three major outliers and
many outliers overall. This explains the rather low
scores the model achieves, even though the diag-
onal is clearly visible. Looking at the three big
outliers and engineering new features specifically
for those could improve the performance. How-
ever, the informativeness of features can behave

Figure 5: Micro-averaged (above) and macro-
averaged (below) F -score of the Doc2Vec model
on the test set (MST=140) for different numbers
of training epochs.

differently from what one might expect. Addi-
tional stylometric features that were specifically
designed for the task lead to significantly worse
results than the simple noun count vectors (Per-
ceptron+ vs. Perceptron). However, this does not
tell anything about the perceptron’s performance
when using other feature combinations.

The error distribution of the multi-layer percep-
tron is displayed in Figure 6 (c). Compared to the
perceptron, most of the classes are predicted much
better and there are less outliers overall. However,
there are more major outliers which explains the
still rather low performance. In further contrast to
the perceptron, the use of all features leads to a
performance increase (MLP+ vs. MLP). This is
probably the case because the multi-layer percep-



(a) Doc2Vec (b) Perceptron (c) MLP+

Figure 6: Confusion matrices of different models on the test set (MST=140).

tron can learn individual weights for the different
feature groups through multiple branches and lay-
ers much better than the single-layer perceptron.

6 Summary & Conclusion

Songtext–artist classification is an example of
multiclass text classification on unbalanced,
sparse and noisy data. Three neural network mod-
els have been investigated on this specific task. 1)
A single-layer perceptron which can be used for
all kinds of classification on vectorised data. 2)
Doc2Vec which is a contemporary tool for text
classification. And 3) an extended multi-layer per-
ceptron which we designed specifically for this
task. While the third and most complex model
achieves the best results, it becomes also visible
that the choice of features has a significant ef-
fect on the classification performance. Here, too,
the multi-layer network with its advanced combi-
nation of different, stylometric as well as count/
embedding-based, feature groups outperforms the
other models.

We come to the conclusion that a vast number
of and unbalanced classes as well as sparse and
not directly correlated data do not allow for a per-
fect performance. Thus, given a text classification
task where the data is as difficult, it makes sense
to reduce the data to something that is manage-
able and meaningful. Sparse classes in a noisy
sample space are little more than guesswork which
might confuse the classifier and decrease the per-
formance on more important classes. While it is
somewhat obvious that removing difficult cases
from the data improves the overall results, it is
not something that one would usually do in a real-
world application. We argue, that it can be a prac-
tical step to approach such a classification task, for
elaborating the complexity of the classifier and en-

gineering good features.

7 Future Work

A general clustering-based topic model encoded
in new features could potentially improve the per-
formance of songtext classifiers. Looking at our
multi-layer perceptron, new features seem to be a
good way to handle such difficult data. Other net-
work architectures such as CNNs and RNNs can
be considered worth a look as well since they im-
proved (noisy) text classification in previous stud-
ies (e.g. Lai et al., 2015; Apostolova and Kreek,
2018).

Another way of dealing with imbalanced data is
to apply oversampling to raise the number of sam-
ples for sparse classes, or undersampling to reduce
the number of samples for frequent classes.
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