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What will we cover?

Preliminaries

Common architectures

Training and decoding

Multilingual translation models

Multi-task learning and the flexibridge model

Important things we do not cover: fine-tuning / domain adaptation,
document-level models, unsupervised MT, hyperparameter optimisation, data
selection / augmentation / distillation, convolutional models, multi-source, factors,
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meaning
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What is machine translation?

Natural task

e Naturally occurring data (no annotation needed)
e Real world application and big demand

Some issues

e Typically there is no single-best solution (ambiguity, interpretation, context)
e Not clear what is a good translation (the challenge of evaluation)
e Limited data for most language pairs and domains (the challenge of training)



Practical considerations

Traditional modeling assumptions

e Text input and text output

e Translate sentences instead of documents (ignore discourse-wide context)
e Tokenize sentences into sequences of words or subword units

e Any training data is good and our idea about “domain” is very fuzzy ...

Evaluation approaches

e Comparison to human reference translations (rough metrics)
e Subjective manual evaluation with some statistical analyses
e Task-based evaluation (keystrokes for post-editing efforts ...)
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What is neural machine translation?

meaning
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GlobalVoices 14501 0.3M T.0M 74M [xcesenfr] [enfr] [tmx] [moses] enfr enfr en-fr dic enfr [query] [sample]

ECB 1 02M 5. M 65M [xcesenfr] [enfr] [tmx] [moses] enfr enfr en-fr en fr [query] [sample]

News-Commentaryll 7398 0.2M 6.7M 52M [xcesenfr] [enfr] [tmx] [ moses] enfr enfr en-fr dic enfr [query] [sample]
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OpusTools (https://pypi.org/project/opustools/)

Convenient tools for accessing and processing OPUS data:

opus_read: read parallel data sets and convert to different output formats
opus_express: Create test/dev/train sets from OPUS data.

opus_cat: extract given OPUS document from release data

opus_get: download files from OPUS

opus_langid: add language ids to sentences in xml files in zip archives
opus_filter: filter out noise and select domain-specific data



Other common pre-processing tools

e Moses corpus cleaning script

training/clean-corpus-n.perl

e Moses normalization tools

tokenizer/replace-unicode-punctuation.perl
tokenizer/remove-non-printing-char.perl
tokenizer/normalize-punctuation.perl

e Basic tokenization, e.g. Moses tools:

tokenizer/tokenizer.perl -a -threads 4 - fi

https://github.com/moses-smt/mosesdecoder
pip install mosestokenizer

pip install polyglot

pip install sacremoses

pip install subword-nmt
pip install sentencepiece
pip install tokenizers



Test data and benchmarks

Annual conference on machine translation WMT (http://statmt.org/wmt20/)

e News translation tasks (http://matrix.statmt.org)
e Special domain tasks (biomedical, similar languages, chat)
e Metrics task, post-editing, quality estimation, ...

Spoken language translation (IWSLT) (http://iwslt.org)

e Speech-to-text translation (e.g. English audio to German text)
e Different domains (speeches, conversational settings, ...)

Test suites for various linguistic phenomena (agreement, ambiguity, discourse, ...)



A taxonomy of MT evaluation approaches

scoring v x e
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Post-editing ' .
Task-based <
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Lucia Specia: Automatic Evaluation of Machine Translation: Moving Away from Word Matching Metrics (Gala presentation, 2016)



General idea: Train a conditional language model

EEXHERNZREPRNEGER—
ZEMDHANHERNEERENE
TR, B 2@ FR AR R
Training = f . HEMNMRER , RGLRESENZ,
raining = find optimal

Translation = decoding
model parameters 1

Probabilistic Model: [Plelg)| Scaren problem (decoding):
e* = argmax P(e|c)
l e

The U.S. island of Guam is maintaining a high
state of alert after the Guam airport and its offices
both received an e-mail from someone calling
himself the Saudi Arabian Osama bin Laden and
threatening a biological/chemical attack against
public places such as the airport.




Modelling Translation

e Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network
Suppose we are translating English to Finnish

e We want to find best Finnish sentence 7" (z1,...,x,,) , given a English sentence S (¥1,--.,¥n)

e We can express translation as a probabilistic model:

T* = arg max p(T|S)
e Expanding using the chain rule gives:
p(T|S) =p(y1,. .., ynlT1,. .., Tm)

n
= Hp(yl|yl'~ ey Yi—1, 1, - - - I‘In)
=1



Differences Between Translation and
Language Model

e Target-side language model: p(T) = [ pilys,- - pi-1)

—1

n

e Translation model: -
p(]8) = H/){.ﬂz/,'|,z/1 ..... Wy L yvensy Bima )

p—1

e \We could just treat sentence pair as one long sequence, but:
o  We do not care about p(S5)
o  We may want different vocabulary, network architecture for source text

> Use separate RNNs for source and target.



Neural Machine Translation (NMT)

e The neural network architecture is called sequence-to-sequence (aka
seq2seq) or encoder-decoder and usually it involves ftwo RNNSs.
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Neural Machine Translation (NMT)
The neural network architecture is called sequence-to-sequence (aka
seqg2seq) or encoder-decoder and usually it involves two RNNSs.
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Neural Machine Translation (NMT)

The neural network architecture is called sequence-to-sequence (aka
seq2seq) or encoder-decoder and usually it involves ftwo RNNs.

Last encoder hidden-state “summarises” source sentence

Sequence-to-sequence is versatile! It is useful for more than just MT

Many NLP tasks can be phrased as sequence-to-sequence:
Summarization (long text — short text)

Dialogue (previous utterances — next utterance)

Parsing (input text — output parse as sequence)

Code generation (natural language — Python code)

O O O O



NMT: Issues

e The sequence-to-sequence model is an example of a Conditional Language
Model:

o Language Model because the decoder is predicting the next word of the target sentence y
o Conditional because its predictions are also conditioned on the source sentence x
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e The sequence-to-sequence model is an example of a Conditional Language
Model:
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Summary vector as information bottleneck
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e This needs to capture all information about the source sentence.

e Problem: Information bofttleneck!




Summary vector as information bottleneck

Last encoder hidden-state “summarises” source sentence.
This needs to capture all information about the source sentence.

Problem: Information bottleneck!
Fixed sized representation degrades as sentence length increases
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Sentence length [Cho et al., 2014]



Attention

e Attention provides a solution to the bottleneck problem.

e Core idea: on each step of the decoder, use direct connection to the encoder
to focus on a particular part of the source sequence




Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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scores into a probability
distribution
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Sequence-to-sequence with attention

Attention output «—{
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Use the attention distribution to take a weighted
sum of the encoder hidden states.

The attention output mostly contains information
from the hidden states that received high
attention.

Attention scores \j

\The ultimate  answer is 42 )

source sentence (input)

<START>




Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Attention: in equations
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Attention: in equations

The ultimate answer i 42 .
L s , <START>

source sentence (input)

We have encoder hidden states hq,...,hy € R?
e On timestep t, we have decoder hidden state s, € R"
We get the attention scores e’ for this step:

et =[sTh,,...,sFhy] e RY

e We take softmax to get the attention distribution ' for this step (this is a
probability distribution and sums to 1)

o! = softmax(e’) € RY



Attention output

Attention: in equations

Attention distribytion

Attentior) scores

h
e We have encoder hidden states 715 ---,hn € R”
e Ontimestep f, we have decoder hidden state g, € RP
e We get the attention scores e! for this step:
et =[sThy,...,sThy] € RY
e We take softmax to get the attention distribution o' for this step (this is a probability
distribution and sums to 1) of = softmax(e') € RN

e We use o' to take a weighted sum of the encoder hidden states to get the attention output Qt

N
a; = Za;"hq (= Rh
=1



Lopullinen

— Attention: in equations

Attention output

Attention distributjon

Attention|scores

e We have encoder hidden states hi,...,hn € R?
On timestep t, we have decoder hidden state s, € R"
We get the attention scores e’ for this step:

e =[sThy,...,sThy] € RY
e We take softmax to get the attention distribution ! for this step (this is a probability distribution and sums to 1)

o = softmax(e’) € RN
e Weuse «fto take a weighted sum of the encoder hidden states to get the attention output Q¢
N
a; = Zafh7 c R

e Finally we concatenate the attention output a; with the decoder hidden state St and proceed as in
the non-attention seq2seq model

[at; St] € th
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o It's very useful to allow decoder to focus on certain parts of the source



Attention is great

e Attention significantly improves NMT performance
o It's very useful to allow decoder to focus on certain parts of the source

e Attention solves the bottleneck problem
o Attention allows decoder to look directly at source; bypass bottleneck



Attention is great

Attention significantly improves NMT performance
o It's very useful to allow decoder to focus on certain parts of the source

Attention solves the bottleneck problem
o Attention allows decoder to look directly at source; bypass bottleneck

Attention provides some interpretability:
o By inspecting attention distribution, we can see what the decoder was focusing on

The ultimate answer is 42

Lopullinen -
vastaus -
- .
- _
I



Attention is a general Deep Learning technique

We've seen that attention is a great way to improve the sequence-to-sequence
model for Machine Translation.

However: You can use attention in many architectures (not just seq2seq) and
many tasks (not just MT)



Attention is a general Deep Learning technique

We've seen that attention is a great way to improve the sequence-to-sequence
model for Machine Translation.
However: You can use attention in many architectures (not just seq2seq) and

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- - mountain in the background.
o
L\
“ .
I
A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

a teddy bear. in the water. trees in the background.

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding

word)

[Xu et al., 2015]



Attention is a general Deep Learning technique

We've seen that attention is a great way to improve the sequence-to-sequence
model for Machine Translation.

However: You can use attention in many architectures (not just seq2seq) and
manv taclcre InAt et NATN

Fzgurc 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

S

A woman holding a clock in her hand.

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table
with a surfboard.

with a large pizza.

A man is talking on his cell phone
while another man watches.

[Xu et al., 2015]
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Attention is a general Deep Learning technique

We've seen that attention is a great way to improve the sequence-to-sequence
model for Machine Translation.

However: You can use attention in many architectures (not just seq2seq) and
many tasks (not just MT)

More general definition of attention:

Given a set of vector values, and a vector query, attention is a technique to
compute a weighted sum of the values, dependent on the query.

We sometimes say that the query attends to the values.
For example, in the seqg2seq + attention model, each
(query) attends to all the encoder hidden states (values).



Attention is a general Deep Learning technique

More general definition of attention:

Given a set of vector values, and a vector query, attention is a technique to
compute a weighted sum of the values, dependent on the query.

Intuition:
e The weighted sum is a selective summary of the information contained in
the values, where the query determines which values to focus on.

e Attention is a way to obtain a fixed-size representation of an arbitrary set of
representations (the values), dependent on some other representation (the

query).



There are several attention variants

dy d
e \We have some values hi;---,hy €R and a query s € R™



There are several attention variants

e \We have some values hi,...,hy € R“ and a query sc R%

e Attention always involves:
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There are several attention variants

e \We have some values hi,...,hy € R“ and a query sc R%

e Attention always involves:

There are multiple
1.  Computing the attention scores e € RN P

ways to do this

2. Taking softmax to get attention distribution .
a = softmax(e) € RY

3. Using attention distribution to take weighted sum of values:

N
a= Zaihi € R%

i=1

thus obtaining the attention output a (sometimes called the context vector)
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Attention variants

There are several ways you can compute the attention scores ¢ e rM from
the values hi,...,hy € R® and a query s e R%

Basic dot-product attention:
o Note: this assumes di = d2
o This is the version we saw earlier e, = sTh; € R

Multiplicative attention: e, = s”Wh,; € R
o Where W ¢ R92x%d: is a weight matrix

Additive attention: e; = v’ tanh(W1h; + Whs) € R
o Where W, € Risxdi W, c Rdsxdz2 are weight matrices and , ¢ rds is a weight vector
o d, (the attention dimensionality) is a hyperparameter

“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf



http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
https://arxiv.org/pdf/1703.03906.pdf

Sequence-to-sequence with attention

Attention outputw o
y' ya‘ .V3
Attention distribution
§?

" <START> Lopullinen vastaus

., o,
§~
Attention scores —————

\The ultimate answer is 42

source sentence (input)

e Are we forgetting something behind?




Sequence-to-sequence with attention

Attention outputw o
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e Are we forgetting something behind?
Attention decisions are made independently (which is suboptimal)




Attention feeding

e Attention decisions should be made jointly taking into account past attention

information.
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Attention feeding

e Attention decisions should be made jointly taking into account past attention
information.

Attention output
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Attention feeding

e Attention decisions should be made jointly taking into account past attention information:
o we hope to make the model fully aware of previous attention choices
o usually the attentional vector is concatenated with the input at the next time step

Attention OUW or}

Yi T y 21 ¥ 3
Attention distribution
Attention scores T
§
. . Previqus
The ultimate answerY is 42 ] <START>  Lopullinen vastaus gg;)n:ton

source sentence (input)



Greedy decoding

We saw how to generate (or “decode”) the target sentence by taking argmax
on each step of the decoder

Lopullinen  vastaus

argmax
- -~
argmax
-~

\
\\‘ > \ >
\ \
\

\
\

\
\ \
, \ f \
\

<START> Lopullinen vastaus




Problems with greedy decoding

e Greedy decoding has no way to undo decisions!

> |nput: The ultimate answeris 42 . (Lopullinen vastaus on 42 .)
—

— Lopullinen _

Lopullinen Iahtolaskenta _  (no going back now...)

e How to fix this?



Exhaustive search decoding

e Ideally we want to find a (length T) translation y that maximizes

P(y|$) = P(y1|$) P(yz|y1,l‘) P(y3|y1,y2,$)---,P(yT|y1,---,yT—1,$)

T
= HP(ytIyla ayt—lam)
t=1

e We could try computing all possible sequences y
o  This means that on each step t of the decoder, we're tracking V! possible partial translations,
where V is vocab size
o  This O(VT) complexity is far too expensive!



Beam search decoding

Core idea: On each step of decoder, keep track of the kK most probable partial

translations (which we call hypotheses)
o kis the beam size (in practice around 5 to 10)

A hypothesis y,...,y, has a score which is its log probability:
score(y1, ..., yt) = log PLm(y1, .- -, yt|x) = ZlogPLM(yi|y1, s PN 5E)
=1

o Scores are all negative, and higher score is better
o We search for high-scoring hypotheses, tracking top k on each step

Beam search is not guaranteed to find optimal solution
But much more efficient than exhaustive search!



Beam search decoding: example

t

e Beam size = k = 2. Blue numbers = score(y,....s) = ) log Pun(uilyn, - - - 9i-1,2)

1=1

<START>

Calculate prob dist
of next word




Beam search decoding: example

t
e Beam size = k = 2. Blue numbers =  score(yn,..., %) =Y log Pum(uilys, - -, yi-1,)
1=1

-0.7 = log P_,, (Lopullinen|<START>)

/ Lopullinen

<START>

Finaali

-0.9 = log P,, (Finaali|[<START>)

Take top k words and
compute scores




Beam search decoding: example

® Beam S|Ze = k = 2 Blue numbers = score(yi,..., Yt) Zlogh\[ Vil i 1i-1;T)

-1.7 =log P ,, (vastaus|<START> Lopullinen) + -0.7

07 - vastaus

Lopullinen
/ | |shtolaskenta

<START> -1.6=log P, (Iahtolaskenta|<START> Lopullinen) + -0.7

-2.9 = log P, (vuonna]|<START> Finaali) + -0.9
| vuonna
Finaali
09 T ja

-1.8 =log P, (ja|<START> Finaali) + -0.9

For each of the k hypotheses, find top
k next words and calculate scores




Beam search decoding: example

t
e Beam size = k = 2. Blue numbers = score(yn,...,u) = > _log Pm(wilyr, - - -, yi-1,7)
1=1

-1.7
a7 - vastaus
Lopullinen
/ - | l3htolaskenta
<START> -1.6
2.9

___——vuonna
Finaali
09

-1.8

Of these k? hypotheses, just keep k
with highest scores




<START>

Beam search decoding: example

t
. _ - —  score(yy,..., Yp) = log Pom(wily, - - 1i-1;T)
e Beam size = k = 2. Blue numbers = il Z:: Lisnsei :
17 __—19"  -2.8=|log P, (on|<START> Lopullinen vastaus) +
vastaus -1.7
- 7 /
Lopullinen - ilman
P 2:9= log P, (ilman|<START> Lopullinen vastaus) +
\ lahtolaskenta 1
alkoi
-1.6 =2.5=log P, (aIk0||<START> Lopullinen
lahtolaskenta) +
-2.9 matkalle

| vuonna
Finaali
09 T ja

-1.8

For each of the k hypotheses, find top
k next words and calculate scores

-3.8=1log P, ( atkalle|<START> Lopullinen
lahtolaskenta) +



Beam search decoding: example

) = Z log Pm(vilyas - - - Yi-1,%)
/:l

e Beam size = k = 2. Blue numbers = “"Wr
17 __—on 28
07 7 vastaus
Lopullinen ~—ilman 0o
/ \‘ lahtolaskenta
<START> -1.6 alkoi , 5
-2-9 matkalle
| vuonna
Finaali -3.8
09 T ja
-1.8

Of these k? hypotheses, just keep k
with highest scores




Beam search decoding: example

° Beam S|Ze — k — 2 Blue numberS — score(yy, ..., Yi) = Z]og Pom(yilya, - - - )i 3i2)

sita 4.0
17— 28 <

vastaus 42
- 7 /
| | 3.4
Lopullinen ilman "0
3.3 | 3}
/ \‘ lahtolaskenta / ilmestya
alkoi 25
<START> -1.6 - itsekin
-2-9 matkalle -3.5
~__——| vuonna
-3.8

Finaali
09

-1.8

For each of the k hypotheses, find top
k next words and calculate scores




Beam search decoding: example

° Beam S|Ze — k — 2 Blue numberS — score(yy, ..., Yi) = Z]og Pom(yilya, - - - )i 3i2)

sita 4.0
47— 28 <

vastaus 42
- 7 /
| | 3.4
Lopullinen ilman "0
3.3 | ; .
/ \‘ lahtolaskenta / ilmestya
alkoi 25
<START> -1.6 - itsekin
-2-9 matkalle -3.5
~__——| vuonna
-3.8

Finaali
09

-1.8

Of these k? hypotheses, just keep k
with highest scores




Beam search decoding: example

e Beam size = k = 2. Blue numbers =

t
score(yy, .. ., Y) = Z log Pom(wilya, - - s - 453)
=1

sita 4.0
17 _—19" s <
taus 42
_ _—vas
' -3.4
Lopullinen ~— ilman b o
33| B
/ \‘ lahtolaskenta / ilmestya
akoi . K|
<START> -1.6 - itsekin
-2-9 matkalle -3.5
| vuonna
Finaali -3.8
09 ja
-1.8

Continue until the <END> token




Beam search decoding: example

. score(yy, .. ., Yt) log Pom(wily, - - s 1 T)
e Beam size =k = 2. Blue numbers = e Z & PRAiG oot
sita 4.0
17 0N 28 <
vastaus 42
- 7 /
i -3.4
Lopullinen 1 ilman o 41
33 |: .
/ \ lahtolaskenta / ilmestya | .........
alkoi 25 [N
<START> -1.6 = itsekin
-29 matkalle -3.5
| vuonna
Finaali -3.8
09 —ja
-1.8

This is the top-scoring hypothesis!
Backtrack to obtain the full hypothesis

<END>

-4.5




Beam search decoding: stopping criterion

In greedy decoding, usually we decode until the model produces a <END>

token
o For example: <START> Lopullinen vastaus on 42 . <END>

In beam search decoding, different hypotheses may produce <END> tokens

on different timesteps
o  When a hypothesis produces <END>, that hypothesis is complete.
o Place it aside and continue exploring other hypotheses via beam search.

Usually we continue beam search until:
o We reach timestep T (where T is some pre-defined cutoff), or
o We have at least n completed hypotheses (where n is pre-defined cutoff)



Beam search decoding: finishing up

e \We have our list of completed hypotheses.
e How to select top one with highest score?

e Each hypothesis y,...,y, on our list has a score

t
score(y1, . .., y¢) = log Pm(ys, - -, yelw) = Y _log Pm(uilya, - - -, yi1, )

=1

e Problem with this: longer hypotheses have lower scores

e Fix: Normalize by length. Use this to select top one instead:

t
1
Z ZlogPLM(yzkl/la . 'ayi—hm)

i=1



Advantages of NMT

NMT has many qualities:

e [luent translations
o Better use of context

e Asingle neural network to be optimized end-to-end
o  No subcomponents to be individually optimized

e Requires much less human engineering effort
o No feature engineering
o Same method for all language pairs



Disadvantages of NMT

NMT is difficult to interpret and control
o Hard to debug
o can't easily specify rules or guidelines for translation

Many difficulties remain:

Out-of-vocabulary words

Domain mismatch between train and test data
Maintaining context over longer text
Low-resource language pairs

Using common sense is still hard

NMT picks up biases in training data

0O O O O O O



Disadvantages of NMT

e Using common sense is still hard
English~ $ ‘D Vg Spanish~ IE] ‘D

paper jam Mermelada de papel

Open in Google Translate Feedback




Disadvantages of NMT

e NMT picks up biases in training data
Hé&n on sairaanhoitaja X

She's a nurse

Han on ohjelmoija He's a programmer

0 )

Didn’t specify gender

0Oz <



Disadvantages of NMT

e Uninterpretable systems do strange things

Somali ~ P English ~ I_D ‘D
Translate from Irish

ag ag ag ag ag ag ag ag ag ag ag ag As the name of the LORD was written
ag ag ag ag ag ag ag ag ag ag ag ag in the Hebrew language, it was written
ag in the language of the Hebrew Nation

Picture source:
https://www.vice.com/en_uk/article/jSnpeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
Explanation: https://www.skynettoday.com/briefs/google-nmt-prophecies



https://www.vice.com/en_uk/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
https://www.skynettoday.com/briefs/google-nmt-prophecies

Disadvantages of NMT

e Out-Of-Vocabulary (OOV) words

words not in the vocabulary of the trained NMT model

o networks have fixed vocabulary
o poor translation of rare/lunknown words



Open-Vocabulary Neural Machine Translation

e How do we represent text in NMT?
1-hot encoding:
o Lookup of word embedding for input
o Probability distribution over vocabulary for output

Large vocabularies
o Increase network size
o Decrease training and decoding speed

Typical network vocabulary size: 10 000 - 100 000 symbols

representation of "cat"

vocabulary | 1-hot vector | embedding
0 |the 0 01
1 cat 1
2 is 0 03
0.7
1024 | mat 0 03




Open-Vocabulary Neural Machine Translation

e Translation is an open-vocabulary problem:
o many training corpora contain millions of word types
o productive word formation processes (compounding; derivation) allow formation and
understanding of unseen words
o names, numbers are morphologically simple, but open word classes



Open-Vocabulary Neural Machine Translation

e Translation is an open-vocabulary problem:
o many training corpora contain millions of word types
o productive word formation processes (compounding; derivation) allow formation and
understanding of unseen words
o names, numbers are morphologically simple, but open word classes

e Solution 1 - Back-off Models:

1. replace rare words with UNK at training time
2. when system produces UNK, translate with a back-off method, for example a dictionary

e \What are the limitations with this method?



Open-Vocabulary Neural Machine Translation

e Solution 1 - Back-off Models:

1. replace rare words with UNK at training time
2. when system produces UNK, translate with a back-off method, for example a dictionary

e \What are the limitations with this method?
o compounds: hard to model 1-to-many relationships
o morphology: hard to predict inflection with back-off dictionary
o names: if alphabets differ, we need transliteration

e (Can we do better?



Open-Vocabulary Neural Machine Translation

e Solution 2 - wishlist:
1. open-vocabulary NMT: encode all words through small vocabulary
2. encoding generalizes to unseen words
3. small text size
4. good translation quality



Open-Vocabulary Neural Machine Translation

e Solution 2 - wishlist:
1. open-vocabulary NMT: encode all words through small vocabulary
2. encoding generalizes to unseen words
3. small text size
4. good translation quality

e Subword units - Byte Pair Encoding (BPE) for word segmentation:
o Start with a vocabulary of characters.
o Most frequent ngram pairs » a new ngram.
o  hyperparameter. when to stop = controls vocabulary size



Subword units - Byte Pair Encoding (BPE)

e Subword units - Byte Pair Encoding (BPE) for word segmentation:
o Start with a vocabulary of characters.
o Most frequent ngram pairs » a new ngram.
o  hyperparameter. when to stop = controls vocabulary size

e Example:

Dictionary Vocabulary

low 5 l,o,w,e,r,n,w,s,tid

lower 2
newest 6

widest 3



Subword units - Byte Pair Encoding (BPE)

e Subword units - Byte Pair Encoding (BPE) for word segmentation:
o Start with a vocabulary of characters.
o Most frequent ngram pairs » a new ngram.
o  hyperparameter. when to stop = controls vocabulary size

e Example:

Dictionary Vocabulary
l,o,w,e, r,n,w,s,tides

low 5
lower 2

widest 3




Subword units - Byte Pair Encoding (BPE)

e Subword units - Byte Pair Encoding (BPE) for word segmentation:
o Start with a vocabulary of characters.
o Most frequent ngram pairs » a new ngram.
o  hyperparameter. when to stop = controls vocabulary size

e Example:

Dictionary Vocabulary
l,o,w,e, r,n,w,s,tid,es, est

low 5
lower 2

widest 3



Subword units - Byte Pair Encoding (BPE)

e Subword units - Byte Pair Encoding (BPE) for word segmentation:
o Start with a vocabulary of characters.
o Most frequent ngram pairs » a new ngram.
o  hyperparameter. when to stop = controls vocabulary size

e Example:

Dictionary Vocabulary
l,o,w,e, r,n,ws,tides,est lo

low 5
lower 2

wid est 3



Subword units - Byte Pair Encoding (BPE)

e Subword units - Byte Pair Encoding (BPE) for word segmentation:
o Automatically decide vocabs for NMT
o Open-vocabulary: operations learned on training set can be applied to unknown words
o compression of frequent character sequences improves efficiency
o trade-off between text length and vocabulary size

Dictionary Vocabulary
,o,w,e, r,n,w,s,ti d,es,estlo
low 5
lower 2
es —es
new est 6 est —>est
wid est 3 I O N IO

e Suppose we have the following new word:
lowest



Subword units - Byte Pair Encoding (BPE)

e Subword units - Byte Pair Encoding (BPE) for word segmentation:
o Automatically decide vocabs for NMT
o Open-vocabulary: operations learned on training set can be applied to unknown words
o compression of frequent character sequences improves efficiency
o trade-off between text length and vocabulary size

Dictionary Vocabulary
,o,w,e, r,n,w,s,ti d,es,estlo
low 5
lower 2
es —es
new est 6 est —>est
wid est 3 I O N IO

e Suppose we have the following new word:
lowest



Subword units - Byte Pair Encoding (BPE)

e Subword units - Byte Pair Encoding (BPE) for word segmentation:
o Automatically decide vocabs for NMT
o Open-vocabulary: operations learned on training set can be applied to unknown words
o compression of frequent character sequences improves efficiency
o trade-off between text length and vocabulary size

Dictionary Vocabulary
,o,w,e, r,n,w,s,ti d,es,estlo
low 5
lower 2
es —es
new est 6 est —>est
wid est 3 I O N IO

e Suppose we have the following new word:
| o w est



Subword units - Byte Pair Encoding (BPE)

e Subword units - Byte Pair Encoding (BPE) for word segmentation:
o Automatically decide vocabs for NMT
o Open-vocabulary: operations learned on training set can be applied to unknown words
o compression of frequent character sequences improves efficiency
o trade-off between text length and vocabulary size

Dictionary Vocabulary
,o,w,e, r,n,w,s,ti d,es,estlo
low 5
lower 2
es —es
new est 6 est —>est
wid est 3 I o N Io

e Suppose we have the following new word:
low est



Byte Pair Encoding (BPE)
Translation quality

20.0

0.0

EN-DE EN-RU

I i word-level NMT (with back-0ff) yean etal, 2015)
" I subword-level NMT: BPE




Byte Pair Encoding (BPE)

Examples
system sentence
source health research
reference Gesundheitsforschungs
word-level (with back-off) | Forschungs
BPE Gesundheits|forsch|ungsin|
source rakfisk
reference pakducka (rakfiska)

word-level (with back-off)
BPE

rakfisk — UNK — rakfisk
rak|flisk — pax|d|ucka (rak|fliska)



Byte Pair Encoding (BPE)

BPE-level subword segmentation is currently the most widely used
technique for open-vocabulary NMT

BPE allows open vocabulary
o  how well it generalizes is still an open question

Segmentation Variants:
o morphologically motivated subword units [Sanchez-Cartagena and Toral, 2016, Tamchyna et
al., 2017, Huck et al., 2017, Pinnis et al., 2017]
o probabilistic segmentation and sampling [Kudo, 2018]
o fully character-level Models [Ling et al. 2015, Lee et al. 2016]



Multilingual neural MT

Transfer learning

e Knowledge transfer between languages and language pairs
e Make use of linguistic relationships of languages
e Practical reason: support low resource scenarios (languages and domains)

Zero-shot translation

e Translate between languages without explicit training examples
e Unseen task trained through multi-task learning

Approaches differ in the amount of parameter sharing



Language labels and completely shared parameters

Simplest case: multi-source,

Sy completely shared parameters
De
Fr »  NMT » | En
Es
Fi




Language labels and completely shared parameters

Multi-target translation models with

En language labels En
De De
Fr p———pp 2de Hello world! =y NMT » | Fr

Es \ Es
Fi Fi

The (embedded) label is always available to the
decoder through the attention mechanism and
triggers the German parameters of the decoder




Emerging language spaces

other
languages

!

English

output sentence
Y Y2 Y3

[ .

QO00O) OO COOD)

\\\\T
O—O——=0
\

4
QOO0 [(COOD) LOOD) OO

[ A

X| X2 X3 X4

language input sentence

flags

multilingual
MT model



Emerging language spaces

Rough clusters of language families

Trans-New Guinea
Otomanguean
Quechuan
Indo-European
Austronesian

? AR

[
| Y5 Nilo-Saharan
% 00 o °%% ¢ 0 2 Asiati
~ . ® .‘ PY P Afro-Asiatic
® ‘.’ .'. Y ad Mayan
ﬁ: ?.' ‘8.?‘. .’..i.. Nig);r—Congo
o® ..&:. ”'.. @ Creole
: NS T el S
o e o
N\ 295 ™
‘.“" 33 tso’éz.g 0.0 . -~ Srg%:z%?ngs
. 0.: ¥ (t-SNE plot)
®e

Emerging Language Spaces Learned From Massively Multilingual Corpora (https://arxiv.org/abs/1802.00273)


https://arxiv.org/abs/1802.00273

Scaling up to many languages

BLEU

aln
bar
bre
chu
eng
fao
fry
glv
hns
isl

aln

3.73
1.26
7.36
11.49

chu eng

SR 17/ .
29001 13.
meS 9.
20.
ook
18.
185

14.

38
99
72
10

82
58

28
87

a1l

fao

8.63
7.00
1.36
9.48

fry glv

5.38 4.27
4.85 3.98
0.00 2.41
7.78 4.93

13.77 14.08 5.38

|

supervised

| )

£al\S"

isl

5.52
4.79
1.25
6.18
9.48

zero-shot



Language labels and completely shared parameters

Transfer and zero-shot with language labels

e \ery easy and surprisingly effective (especially for related languages)
e Improves low-resource scenarios

e Enables zero-shot translation (but only) if source and target language appear
in different combinations with other languages during training

e Single model for many languages, mixed language support
Limits

e Capacity bottleneck: doesn’t scale to many languages
e Typically no improvement for high-resource languages



Multilingual NMT with partially shared parameters

[ NN Decoders: }

‘.
I
P
1
I
I
I

Attntion brige

shared meaning representation matrix

[NN Encoders:} m

Multilingual NMT with a Language-Independent Attention Bridge, Raul Vazquez, Alessandro Raganato, Jorg Tiedemann, Mathias Creutz (Rep4NLP 2019)



https://www.aclweb.org/anthology/W19-4305.pdf
https://www.aclweb.org/anthology/people/r/raul-vazquez/
https://www.aclweb.org/anthology/people/a/alessandro-raganato/
https://www.aclweb.org/anthology/people/j/jorg-tiedemann/
https://www.aclweb.org/anthology/people/m/mathias-creutz/

https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg

The attention bridge model

S So S3 —---- =87
-y C3
language-specific A Ba: mﬁu
parameters _decoder  |ur oz g — g7 shared among all
' enc@,der . ¥ language pairs

T[] ] e 7
3

I To I3 T

Architecture proposed by Cifka and Bojar (2018). Our implementation in OpenNMT-py (MTM2018)



Focus of attention

we cannot afford to lose more GftcINOMEHUMMNE existed at the beginning of the N_ine_ties',
(@ k=1

we cannot afford to lose more of the momentum that existed at the beginning| S NEHNGEN ties .
we cannot afford to lose more of thelffiomentumMMMMEMEE 2 the beginning of the N_ine_ties .
we cannot afford to lose more of the momentum that existed at the beginning of the | NS
we cannotjJlllllll lose more of the momentum that existed at the beginning of the N_ine._ ties .
we cannot afford to lose more offffiCHNMBMMBHMN that existed at the beginning of the N_ine_ ties .
we cannot afford to losejIlllBllBIERE momentum that existed at the beginning of the N_ine_ ties .
we cannot afford tofllfif0ré of the momentum that existed at the beginning of the N_ine_ties .
B &6 to lose more of the momentum that existed at the beginning of the N_ine_ ties .
we cannot afford to lose more of the momentum that [l the beginning of the N_ine_ ties .
we cannot afford to lose more of the momentum that existed i NGIMMMN Of the N_ine_ties .

(b) k=10

we cannot afford toj il of the momentum that existed at the beginning of the N_ ine_ ties .
Il cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ ties .
we cannot afford to lose more of the momentum that existed at the beginning of the N_[Jlill ties .
we cannot afford toffll more of the momentum that existed at the beginning of the N_ ine_ ties .
welllll afford to lose more of the momentum that existed at the beginning of the N_ine_ ties .
we cannot afford to lose more of the momentum that existed at the |l of the N_ine_ ties .
we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_[Jll .
we cannot afford to lose' morejilll momentum that existed at the beginning of the N_ine_ ties .
we cannot afford to lose more of the momentum that existed ffilll beginning of the N_ ine_ ties .
we cannot afford to lose more of the momentum that existed at the beginning of thelll ine_ ties .
we cannot afford to lose more of thej Ml that existed at the beginning of the N_ine_ ties .
we cannot afford to lose more of the momentum thatjlll at the beginning of the N_ine_ ties .
we cannot afford to loseJJlill of the momentum that existed at the beginning of the N_ine_ ties .
we cannotj il to lose more of the momentum that existed at the beginning of the N_ ine_ ties .
we cannot afford to lose more of the momentum thatJlll at the beginning of the N_ine_ ties .
we cannot afford to lose more offiill momentum that existed at the beginning of the N_ ine_ ties .
we cannot afford to lose more of the momentum that existed [iiiEiBegifning offilig N_ ine_ ties .
we cannotj il to lose more of the momentum that existed at the beginning of the N_ine_ ties .
we cannot afford to lose more/of the momentum|ilill existed at the beginning of the N_ ine_ ties .
we cannot afford to lose more! offllffiomentum that existed at the beginning of the N_ine_ ties .
we cannot afford to lose more of the momentum that existed at the beginning|Gilll N_ ine_ ties .
we cannot afford to lose more of the momentum that{Jlllll at the beginning of the N_ ine_ ties .
W& cannot afford toJllll more of the momentum that existed at the beginning of the N_ ine_ ties .
we cannot affordfili] lose more of the momentum that existed at the beginning of the N_ ine_ tiesli
we cannot [l lose more of the momentum that existed at the beginning of the N_ ine_ ties .
{WElSEIRS =rford toflllll more of the momentum that existed at the beginning of the N_ ine_ ties .
we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_[IllY
we cannot afford to lose more of the momentur |l at the beginning of the N_ine_ ties .
we cannot afford to lose morefllf the momentum that existed at the beginning of the N_ ine_ ties .
to lose more/6f the momentum that existed at the beginning of the N_ ine_ ties .

welllllll afford to lose more of the momentum that existed at the beginning of the N_ine_ ties .
we cannot affordill lose more of the momentum that existed at the beginning of the N_ine_ ties .
SRS afford'f6 lose more of the momentum that existed at the beginning of the N_ine_ ties .
Il Gannot afford to lose more of the momentum that existed at the beginning of the N_ ine_ ties .
Il cannot afford to lose more of the momentum that existed at the beginning of the N_ ine_ ties .
we cannot afford to lose more of the momentum that existed at the beginning of flllilll ine__ tiesl]
{8 cannot affordlill 1ose more of the momentum that existed at the beginning of the N_ ine_ ties .
Weleanigt affordlll 1ose more of the momentum that existed at the beginning of the N_ine_ tiesl
welllllll afford to lose more of the momentum that existed at the beginning of the N_ine_ ties .
N =rfordlf§ 1656 more of the momentum that existed at the beginning of the N_ine_ ties .
IS G (0se more of the momentum that existed at the beginning of the N_ine_ ties .
e cannot affordlill lose more of the momentum that existed at the beginning of the N_ ine_ ties .
SRR &ifford to lose more of the momentum that existed at the beginning of the N_ ine_ ties .
WSl fford to lose more of the momentum that existed at the beginning of the N_ ine_ ties .
ve lose more of the momentum that existed at the beginning of the N_ine_ ties .
SN =fforlll lose more of the momentum that existed at the beginning of the N_ ine_ ties .
8 cannot affordliSllEE morelGHCIMomMenuMINat existed at the beginning of the N_ine_ ties .
of the momentum that existed at the beginning of the N_ ine_ ties .
& cannot afford tollll more of thejMMBMMM that existed at the beginning of the N_ine_ ties .
we cannotllllll toll688 more of the momentum that existed at the beginning of the N_ine_ ties .

(d) k=50




Multilingual image caption translation

60 T T i i
B m2m + monolingual

Bl bilingual + attBridge
I zero-shot

55

model with
all languages

BLEU

not seen in
training data
(zero shot)
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Multi-task learning and multimodality

[ NN Decoders: ]

‘.
I
P
I
I
I
I

Attntion brige

shared meaning representation matrix

N

audio } [ images

{NN Encoders: ] m




Hands on ...

The attention bridge implementation:
https://qithub.com/Helsinki-NLP/OpenNMT-py/tree/att-brg

Tutorial with some practical tips about how to train a neural machine translation system:
https://github.com/neubig/nmt-tips



https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg
https://github.com/neubig/nmt-tips

