A crash course in neural machine translation

Alessandro Raganato & Jörg Tiedemann

Slide credits: Abigail See, Rico Sennrich

What will we cover?

Preliminaries

Common architectures

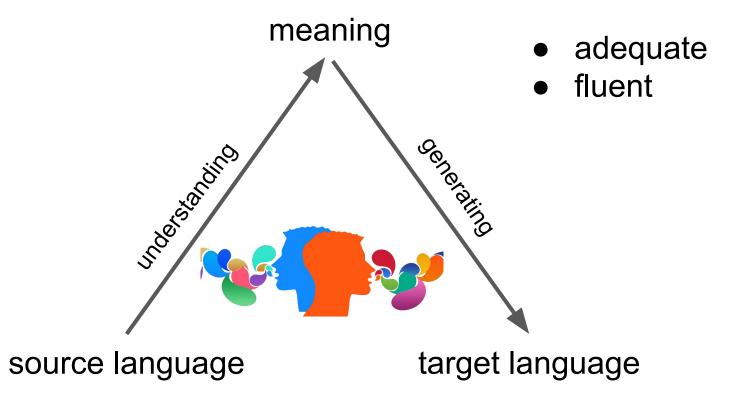
Training and decoding

Multilingual translation models

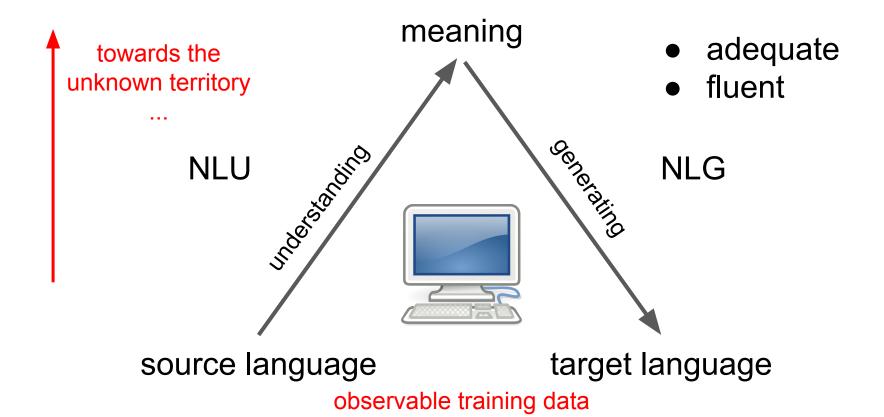
Multi-task learning and the flexibridge model

Important things we do not cover: fine-tuning / domain adaptation, document-level models, unsupervised MT, hyperparameter optimisation, data selection / augmentation / distillation, convolutional models, multi-source, factors,

What is translation?



What is machine translation?



What is machine translation?

Natural task

- Naturally occurring data (no annotation needed)
- Real world application and big demand

Some issues

- Typically there is no single-best solution (ambiguity, interpretation, context)
- Not clear what is a good translation (the challenge of evaluation)
- Limited data for most language pairs and domains (the challenge of training)

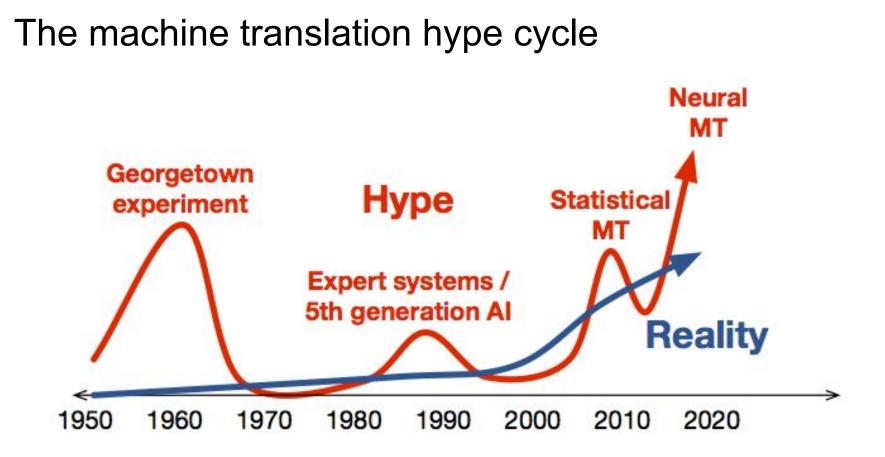
Practical considerations

Traditional modeling assumptions

- Text input and text output
- Translate sentences instead of documents (ignore discourse-wide context)
- Tokenize sentences into sequences of words or subword units
- Any training data is good and our idea about "domain" is very fuzzy ...

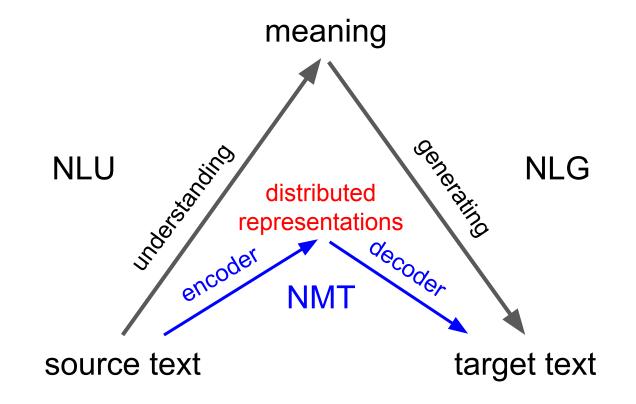
Evaluation approaches

- Comparison to human reference translations (rough metrics)
- Subjective manual evaluation with some statistical analyses
- Task-based evaluation (keystrokes for post-editing efforts ...)

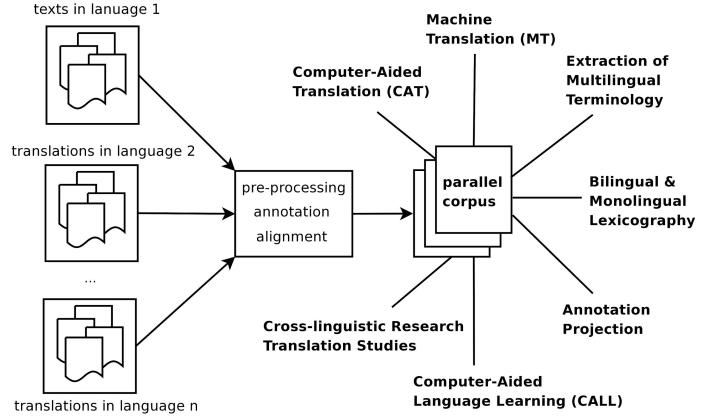


from Philipp Koehn: Neural Machine Translation

What is neural machine translation?



Training data



link to corpus website		select source language			select target language			select size					word alignment		bilingual dictionaries		alternative alignments	
Search & downk ad resources:		en (English)			fr (French)			○ >10M		٢								
Language resources: click on [tmx moses xces lang-id] to download the data! (raw = untokenized, ud = parsed with universal dependencies, alg = word alignments and phrase ta														rase tables)				
corpus	doc's	sent's	en tokens	fr tokens	XCES/XML	raw	TMX	Moses	mono	raw	ud	alg	dic	freq			oth er files	
EUbookshop	16947	10.8M	406.8M	431.8M	[xces en fr]	[en fr]	[tmx]	[moses]	en fr	en fr		en-fr		en fr	[query]	[sample]		
MultiUN	87480		373.8M	454.6M	[xces en fr]		-			-		en-fr				[sample]		
OpenSubtitles2018	55650		363.4M	338.0M	[xces en fr]	-	-	-			en fr	en-fr				[sample]		_
OpenSubtitles2016			299.0M	276.0M	[xces en fr]	-	-				en					[sample]		_
DGT	26879		72.8M	68.7M	[xces en fr]											[sample]		_
Europarl	9428		59.9M	65.7M	[xces en fr]						en fr	en-fr			[query]	[sample]		_
JRC-Acquis	12056		34.2M	36.4M	[xces en fr]	-								en fr		[sample]		_
Wikipedia	2		23.0M	17.8M	[xces en fr]					en fr						[sample]		_
EMEA	1933		12.0M	14.8M	[xces en fr]						en fr					[sample]		_
GlobalVoices	14501		7.0M	7.4M	[xces en fr]											[sample]		
ECB	1		5.7M	6.5M	[xces en fr]					-		en-fr				[sample]		
News-Commentary11	7398		6.7M	5.2M	[xces en fr]			-				en-fr			[query]	[sample]		
GNOME	2293		5.6M	5.3M	[xces en fr]	-								en fr		[sample]		
News-Commentary	1	0.2M	4.7M	5.4M	[xces en fr]	[en fr]			en fr	en fr						[sample]		
total	278822	117.2M	1.7G	1.7G	117.2M		89 M	108 M						1				
O _R PU	JS		data in) (tokeniz		untokenize XML	U	oilingua FMX	plai	ned n text	plai	nolin in tex	igual xt				search interfac	alignr ce samp	
					= ti	rainir	ng da	ta fo	or									
http://opus.nlpl	machine translation																	

OpusTools (https://pypi.org/project/opustools/)

Convenient tools for accessing and processing OPUS data:

- **opus_read:** read parallel data sets and convert to different output formats
- **opus_express:** Create test/dev/train sets from OPUS data.
- **opus_cat:** extract given OPUS document from release data
- **opus_get:** download files from OPUS
- **opus_langid:** add language ids to sentences in xml files in zip archives
- **opus_filter:** filter out noise and select domain-specific data

Other common pre-processing tools

Moses corpus cleaning script

training/clean-corpus-n.perl

• Moses normalization tools

tokenizer/replace-unicode-punctuation.perl tokenizer/remove-non-printing-char.perl tokenizer/normalize-punctuation.perl https://github.com/moses-smt/mosesdecoder pip install mosestokenizer pip install polyglot pip install sacremoses

pip install subword-nmt pip install sentencepiece pip install tokenizers

• Basic tokenization, e.g. Moses tools:

tokenizer/tokenizer.perl -a -threads 4 -l fi

Test data and benchmarks

Annual conference on machine translation WMT (http://statmt.org/wmt20/)

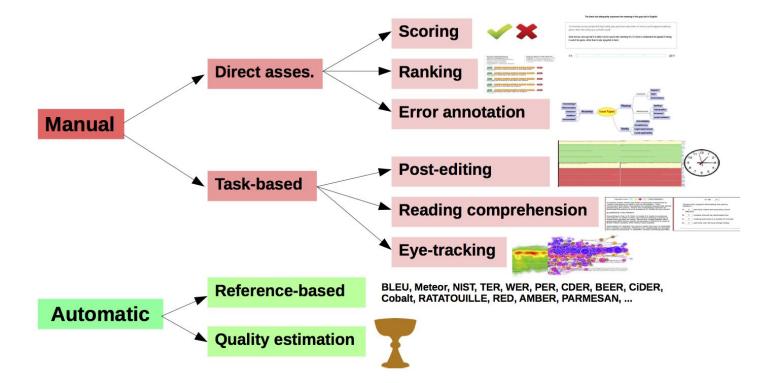
- News translation tasks (http://matrix.statmt.org)
- Special domain tasks (biomedical, similar languages, chat)
- Metrics task, post-editing, quality estimation, ...

Spoken language translation (IWSLT) (http://iwslt.org)

- Speech-to-text translation (e.g. English audio to German text)
- Different domains (speeches, conversational settings, ...)

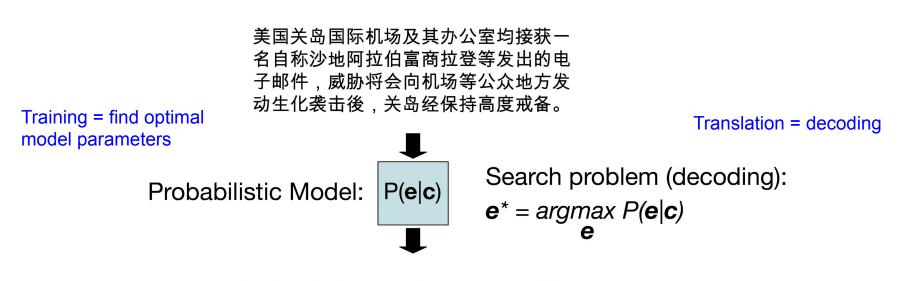
Test suites for various linguistic phenomena (agreement, ambiguity, discourse, ...)

A taxonomy of MT evaluation approaches



Lucia Specia: Automatic Evaluation of Machine Translation: Moving Away from Word Matching Metrics (Gala presentation, 2016)

General idea: Train a conditional language model



The U.S. island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself the Saudi Arabian Osama bin Laden and threatening a biological/chemical attack against public places such as the airport.

Modelling Translation

• Neural Machine Translation (NMT) is a way to do Machine Translation with a *single neural network*

Suppose we are translating English to Finnish

- We want to find best Finnish sentence $T(x_1, \ldots, x_m)$, given a English sentence $S(y_1, \ldots, y_n)$
- We can express translation as a probabilistic model:

$$T^* = \arg\max_T p(T|S)$$

• Expanding using the chain rule gives:

$$p(T|S) = p(y_1, \dots, y_n | x_1, \dots, x_m)$$

= $\prod_{i=1}^n p(y_i | y_1, \dots, y_{i-1}, x_1, \dots, x_m)$

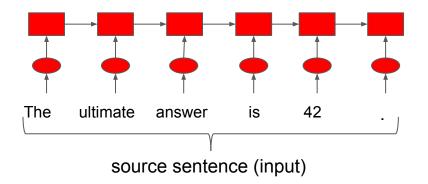
Differences Between Translation and Language Model

• Target-side language model: p(T) =

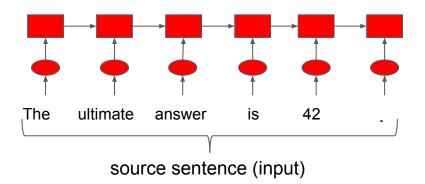
$$T$$
) = $\prod_{i=1}^{n} p(y_i | y_1, \dots, y_{i-1})$

- Translation model: $p(T|S) = \prod_{i=1}^{n} p(y_i|y_1, \dots, y_{i-1}, x_1, \dots, x_m)$
- We could just treat sentence pair as one long sequence, but:
 - $\circ \quad \ \ \, \mbox{We do not care about } p(S)$
 - We may want different vocabulary, network architecture for source text

Use separate RNNs for source and target.

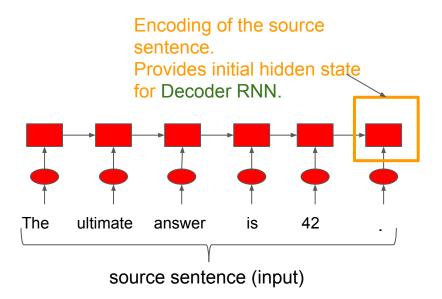


• The neural network architecture is called sequence-to-sequence (aka seq2seq) or encoder-decoder and usually it involves *two* RNNs.



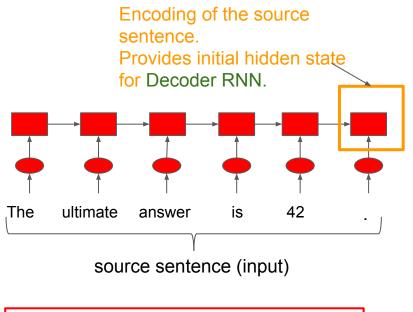
The **encoder** creates a representation of the source sentence.

• The neural network architecture is called sequence-to-sequence (aka seq2seq) or encoder-decoder and usually it involves *two* RNNs.



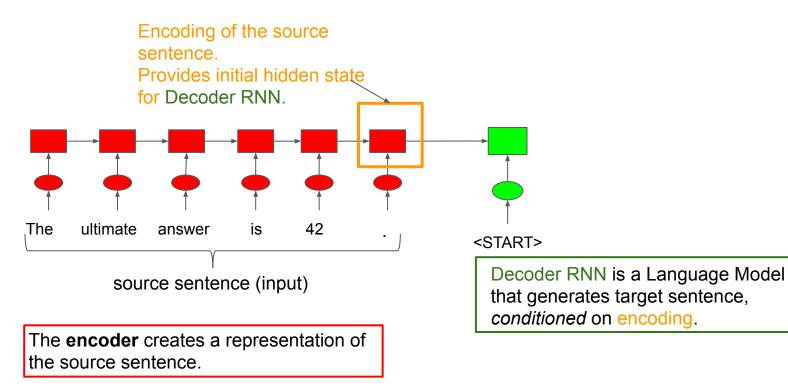
The **encoder** creates a representation of the source sentence.

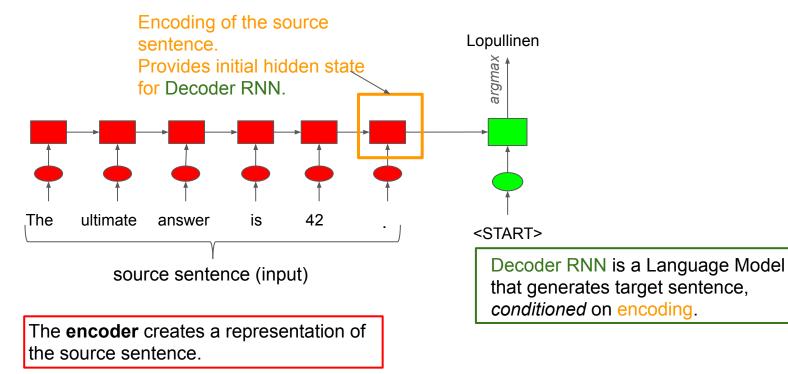
• The neural network architecture is called sequence-to-sequence (aka seq2seq) or encoder-decoder and usually it involves *two* RNNs.

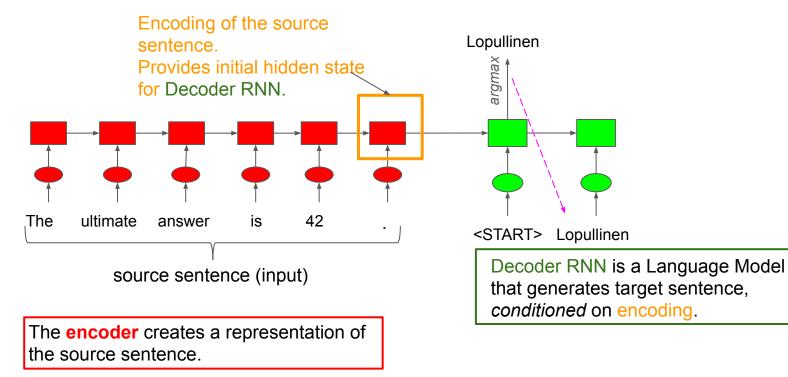


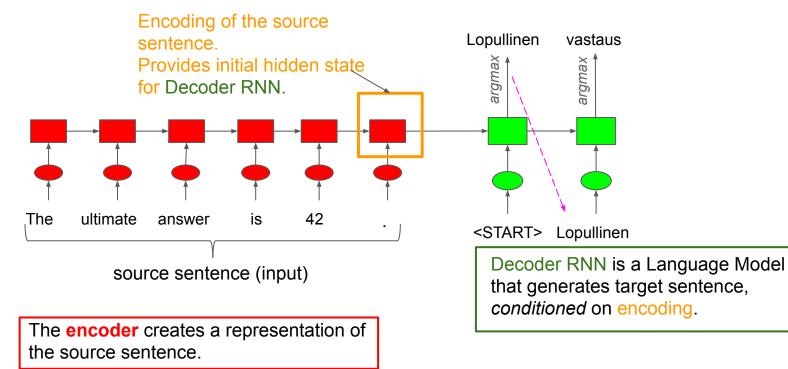
The **encoder** creates a representation of the source sentence.

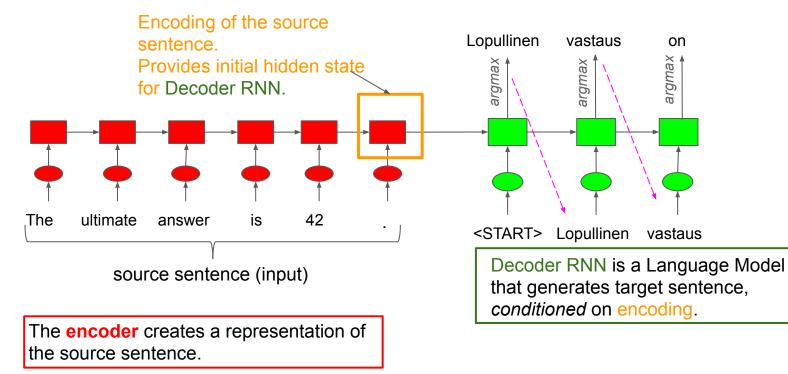
Decoder RNN is a Language Model that generates target sentence, *conditioned* on encoding.

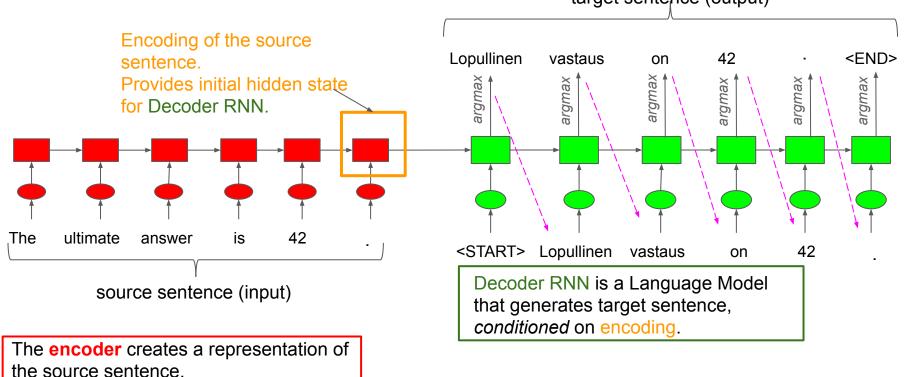










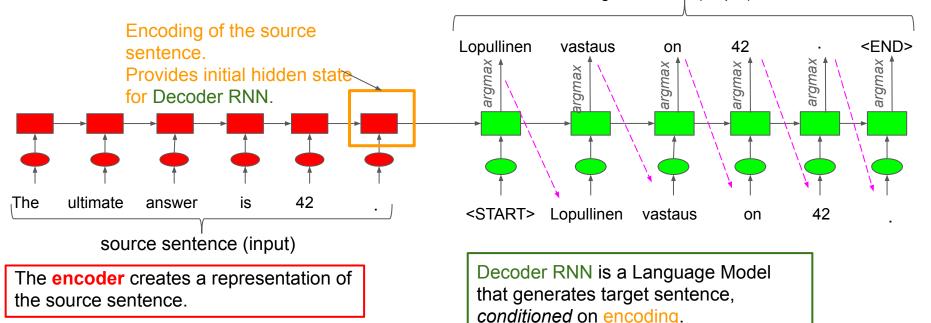


- The neural network architecture is called sequence-to-sequence (aka seq2seq) or encoder-decoder and usually it involves *two* RNNs.
- Last encoder hidden-state "summarises" source sentence

- Sequence-to-sequence is versatile! It is useful for more than just MT
- Many NLP tasks can be phrased as sequence-to-sequence:
 - \circ Summarization (long text \rightarrow short text)
 - Dialogue (previous utterances \rightarrow next utterance)
 - Parsing (input text \rightarrow output parse as sequence)
 - \circ Code generation (natural language \rightarrow Python code)

NMT: Issues

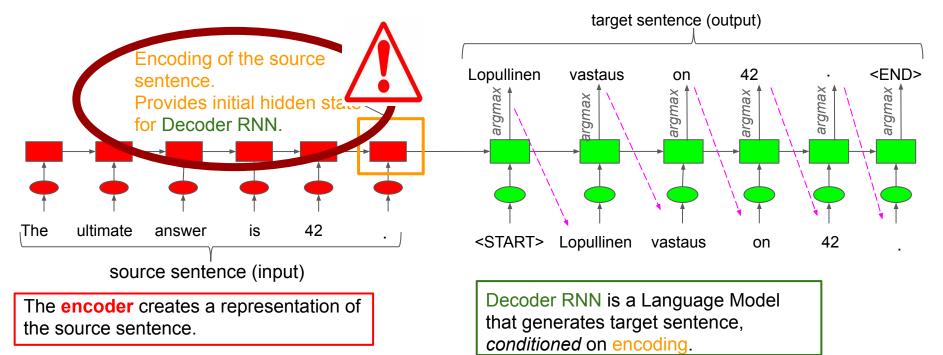
- The sequence-to-sequence model is an example of a Conditional Language Model:
 - Language Model because the decoder is predicting the next word of the target sentence y
 - **Conditional** because its predictions are *also* conditioned on the source sentence *x*



target sentence (output)

NMT: Issues

- The sequence-to-sequence model is an example of a Conditional Language Model:
 - Language Model because the decoder is predicting the next word of the target sentence y
 - **Conditional** because its predictions are *also* conditioned on the source sentence *x*

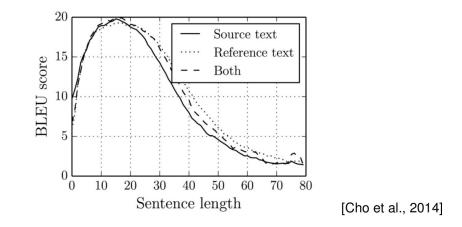


Summary vector as information bottleneck

- Last encoder hidden-state "summarises" source sentence.
- This needs to capture <u>all information</u> about the source sentence.
- **Problem:** Information bottleneck!

Summary vector as information bottleneck

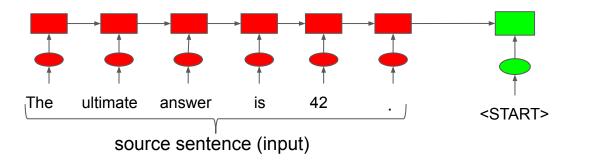
- Last encoder hidden-state "summarises" source sentence.
- This needs to capture <u>all information</u> about the source sentence.
- **Problem:** Information bottleneck!
- Fixed sized representation degrades as sentence length increases



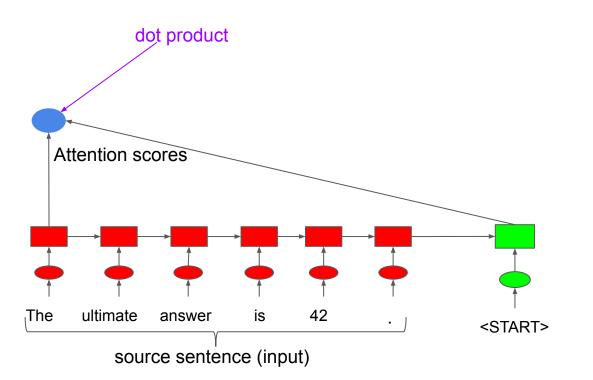
Attention

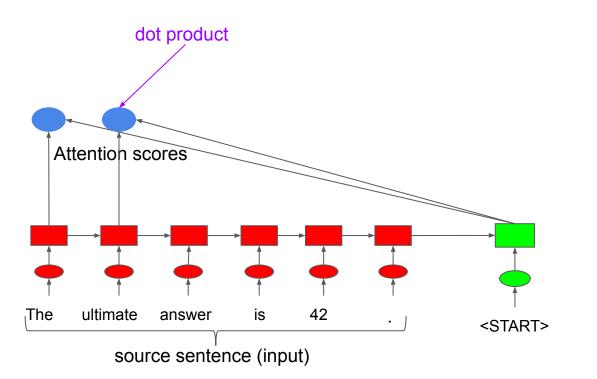
- Attention provides a solution to the bottleneck problem.
- <u>Core idea</u>: on each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence

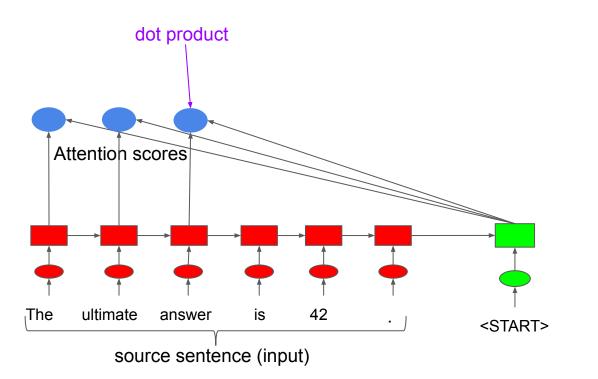
Sequence-to-sequence with attention

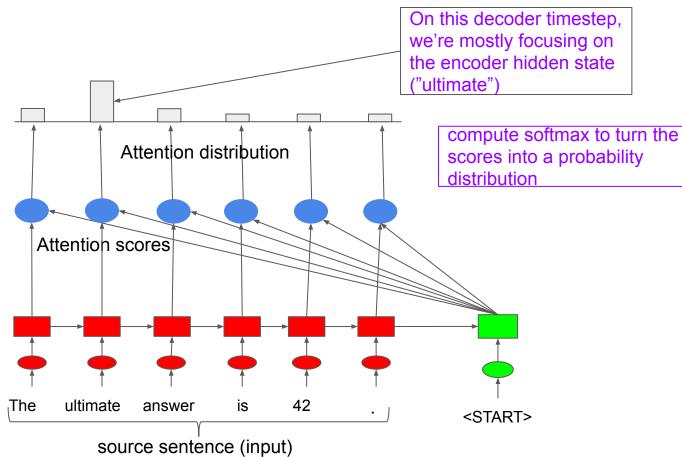


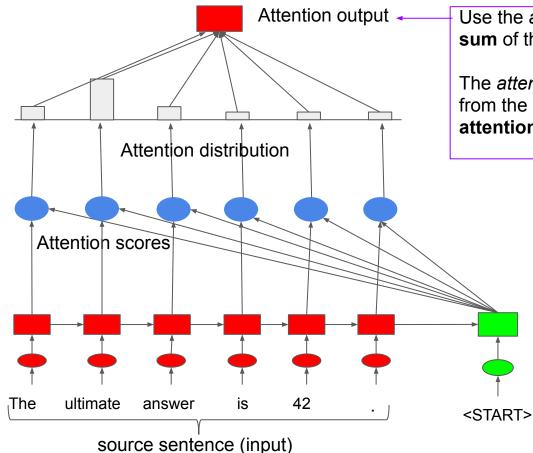
Sequence-to-sequence with attention





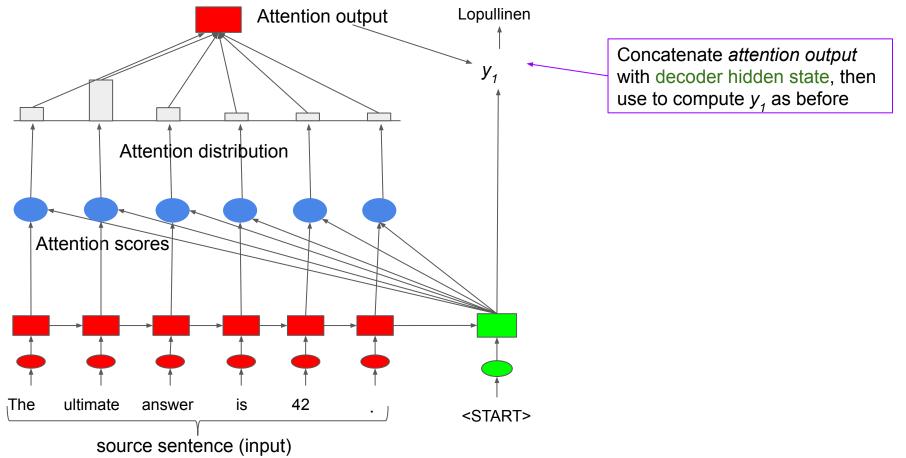


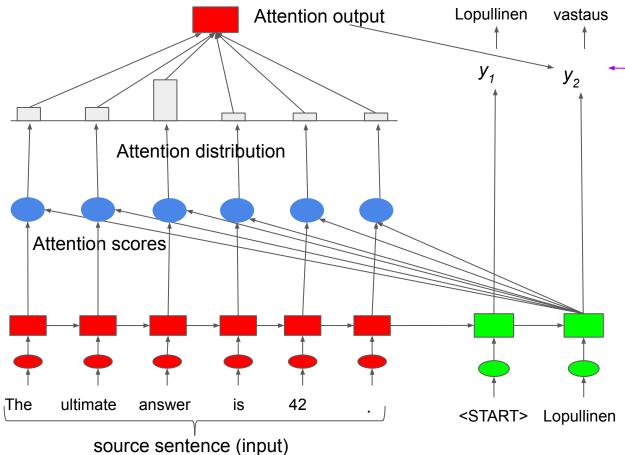




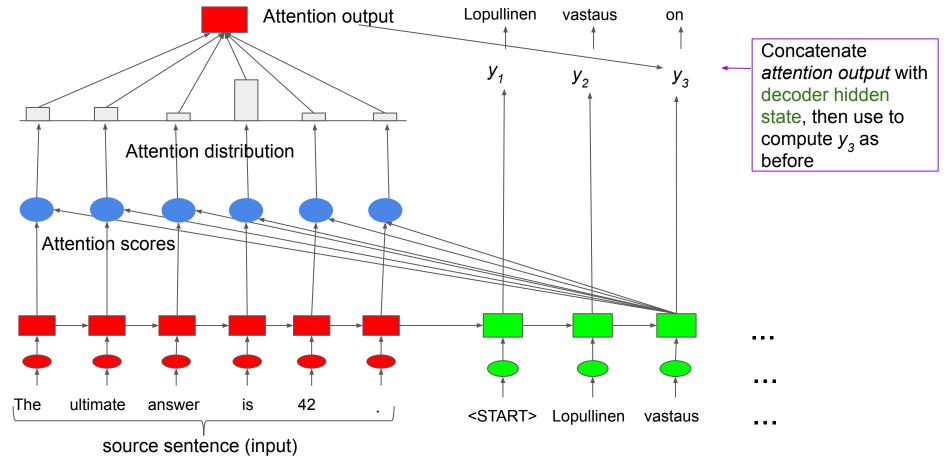
Use the *attention distribution* to take a **weighted sum** of the encoder hidden states.

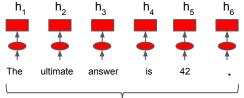
The *attention output* mostly contains information from the hidden states that received high attention.





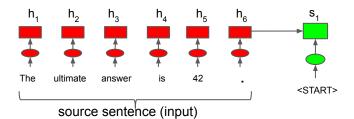
Concatenate *attention output* with decoder hidden state, then use to compute y_2 as before



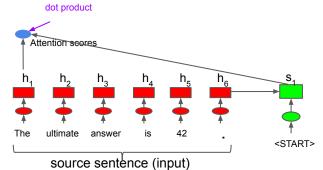


source sentence (input)

• We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$



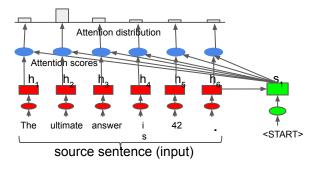
- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep *t*, we have decoder hidden state $s_t \in \mathbb{R}^h$



• We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$

- On timestep *t*, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the *attention scores* e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

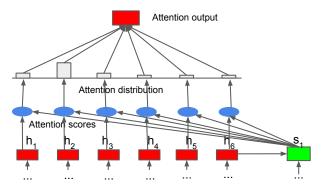


- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep *t*, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the *attention scores* e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the *attention distribution* α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

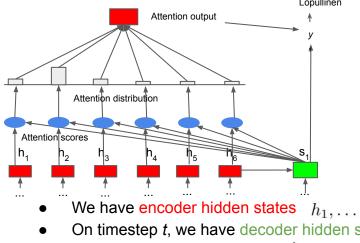


- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep *t*, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the *attention scores* e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

- We take softmax to get the *attention distribution* α^t for this step (this is a probability distribution and sums to 1) $\alpha^t = \operatorname{softmax}(e^t) \in \mathbb{R}^N$
- We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$oldsymbol{a}_t = \sum_{i=1}^N lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$



- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep *t*, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the *attention scores* e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

We take softmax to get the *attention distribution* α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$oldsymbol{a}_t = \sum_{i=1}^N lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$

Finally we concatenate the *attention output* a_t with the decoder hidden state s_t and proceed as in the non-attention seg2seg model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Attention is great

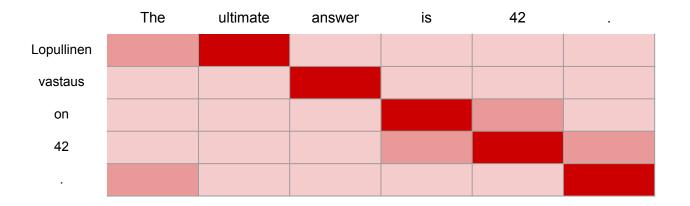
- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source

Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck

Attention is great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention provides some interpretability:
 - By inspecting attention distribution, we can see what the decoder was focusing on



- We've seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- <u>However</u>: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)

- We've seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- <u>However</u>: You can use attention in many architectures (not just seq2seq) and

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Fig. 5. Examples of the attention-based model attending to the correct object (*white* indicates the attended regions, *underlines* indicated the corresponding word) [22]

- We've seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- <u>However</u>: You can use attention in many architectures (not just seq2seq) and

many tacks (not just MT)

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A large white bird standing in a forest.

A woman holding a <u>clock</u> in her hand.

A man wearing a hat and a hat on a <u>skateboard</u>.

A person is standing on a beach with a <u>surfboard.</u>

A woman is sitting at a table with a large <u>pizza</u>.

A man is talking on his cell phone while another man watches.

[Xu et al., 2015]

- We've seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- <u>However</u>: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)

• More general definition of attention:

Given a set of vector values, and a vector query, <u>attention</u> is a technique to compute a weighted sum of the values, dependent on the query.

- We've seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- <u>However</u>: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)
- More general definition of attention:

Given a set of vector values, and a vector query, <u>attention</u> is a technique to compute a weighted sum of the values, dependent on the query.

- We sometimes say that the query *attends* to the values.
- For example, in the seq2seq + attention model, each decoder hidden state (query) <u>attends</u> to all the encoder hidden states (values).

• More general definition of attention:

Given a set of vector values, and a vector query, <u>attention</u> is a technique to compute a weighted sum of the values, dependent on the query.

- Intuition:
 - The weighted sum is a selective summary of the information contained in the values, where the query determines which values to focus on.
 - Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).

There are several attention variants

• We have some values $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$

and a query $egin{array}{c} s \in \mathbb{R}^{d_2} \end{array}$

There are *several* attention variants

We have some values $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and a query $s \in \mathbb{R}^{d_2}$

- Attention always involves: •
 - Computing the *attention scores* $e \in \mathbb{R}^N$ 1.
 - 2. Taking softmax to get *attention distribution* α :

 $\alpha = \operatorname{softmax}(\boldsymbol{e}) \in \mathbb{R}^N$

3. Using attention distribution to take weighted sum of values:

$$oldsymbol{a} = \sum_{i=1}^N lpha_i oldsymbol{h}_i \in \mathbb{R}^{d_1}$$

thus obtaining the *attention output a* (sometimes called the context vector)

There are several attention variants

• We have some values $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and a query $s \in \mathbb{R}^{d_2}$

Attention always involves:

•

- 1. Computing the *attention scores* $e \in \mathbb{R}^N$
- 2. Taking softmax to get *attention distribution* α :

 $\alpha = \operatorname{softmax}(\boldsymbol{e}) \in \mathbb{R}^N$

3. Using attention distribution to take weighted sum of values:

$$oldsymbol{a} = \sum_{i=1}^N lpha_i oldsymbol{h}_i \in \mathbb{R}^{d_1}$$

thus obtaining the *attention output a* (sometimes called the context vector)

There are multiple ways to do this

• There are several ways you can compute the *attention scores* $e \in \mathbb{R}^N$ from the values $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and a *query* $s \in \mathbb{R}^{d_2}$

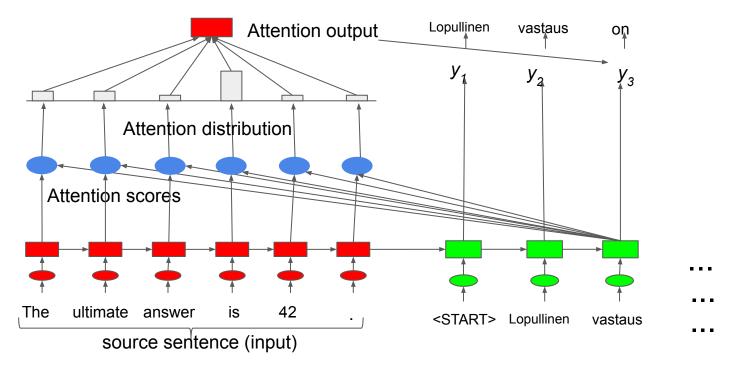
- There are several ways you can compute the *attention scores* $e \in \mathbb{R}^N$ from the values $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and a *query* $s \in \mathbb{R}^{d_2}$
- Basic dot-product attention:
 - \circ Note: this assumes $d_1 = d_2$
 - This is the version we saw earlier $e_i = s^T h_i \in \mathbb{R}$

- There are several ways you can compute the *attention scores* $e \in \mathbb{R}^N$ from the values $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and a *query* $s \in \mathbb{R}^{d_2}$
- Basic dot-product attention:
 - \circ Note: this assumes $d_1=d_2$
 - This is the version we saw earlier $e_i = s^T h_i \in \mathbb{R}$
- <u>Multiplicative attention</u>: $e_i = s^T W h_i \in \mathbb{R}$
 - \circ Where $oldsymbol{W} \in \mathbb{R}^{d_2 imes d_1}$ is a weight matrix

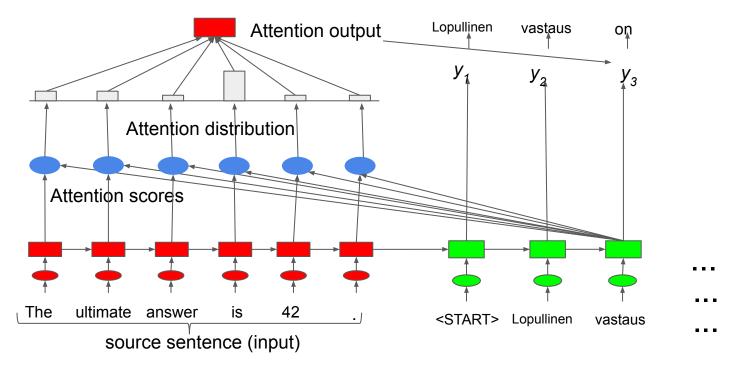
- There are several ways you can compute the *attention scores* $e \in \mathbb{R}^N$ from the values $h_1, \ldots, h_N \in \mathbb{R}^{d_1}$ and a *query* $s \in \mathbb{R}^{d_2}$
- Basic dot-product attention:
 - \circ Note: this assumes $d_1=d_2$
 - This is the version we saw earlier $oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{h}_i \in \mathbb{R}$
- <u>Multiplicative attention</u>: $e_i = s^T W h_i \in \mathbb{R}$
 - \circ Where $oldsymbol{W} \in \mathbb{R}^{d_2 imes d_1}$ is a weight matrix
- Additive attention: $e_i = v^T \tanh(W_1 h_i + W_2 s) \in \mathbb{R}$
 - Where $W_1 \in \mathbb{R}^{d_3 \times d_1}, W_2 \in \mathbb{R}^{d_3 \times d_2}$ are weight matrices and $v \in \mathbb{R}^{d_3}$ is a weight vector
 - \circ d_3 (the attention dimensionality) is a hyperparameter

More information:

"Deep Learning for NLP Best Practices", Ruder, 2017. <u>http://ruder.io/deep-learning-nlp-best-practices/index.html#attention</u> "Massive Exploration of Neural Machine Translation Architectures", Britz et al, 2017, <u>https://arxiv.org/pdf/1703.03906.pdf</u>



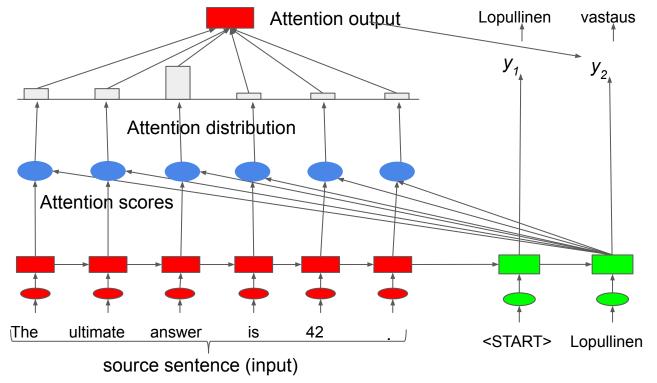
• Are we forgetting something behind?



<u>Are we forgetting something behind?</u>
 Attention decisions are made independently (which is *suboptimal*)

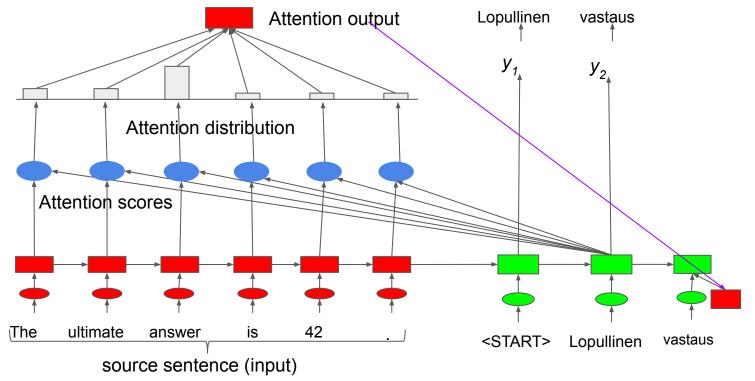
Attention feeding

• Attention decisions should be made jointly taking into account past attention information.



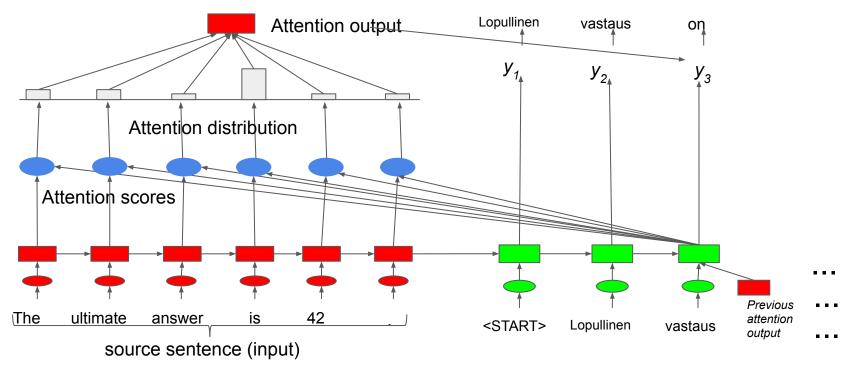
Attention feeding

• Attention decisions should be made jointly taking into account past attention information.



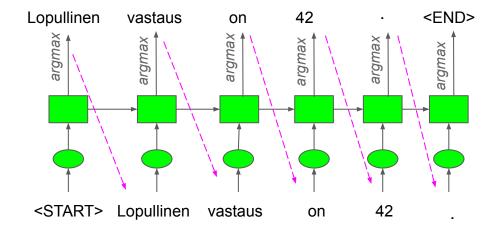
Attention feeding

- Attention decisions should be made jointly taking into account past attention information:
 - we hope to make the model fully aware of previous attention choices
 - usually the attentional vector is concatenated with the input at the next time step



Greedy decoding

• We saw how to generate (or "decode") the target sentence by taking argmax on each step of the decoder



Problems with greedy decoding

- Greedy decoding has no way to undo decisions!
 - Input: The ultimate answer is 42. (Lopullinen vastaus on 42.)

\implies Lopullinen _

Lopullinen lähtölaskenta (no going back now...)

• How to fix this?

Exhaustive search decoding

• Ideally we want to find a (length *T*) translation *y* that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$
$$= \prod_{t=1}^T P(y_t|y_1, \dots, y_{t-1}, x)$$

- We could try computing all possible sequences y
 - This means that on each step *t* of the decoder, we're tracking V^t possible partial translations, where V is vocab size
 - This O(V^T) complexity is far too expensive!

Beam search decoding

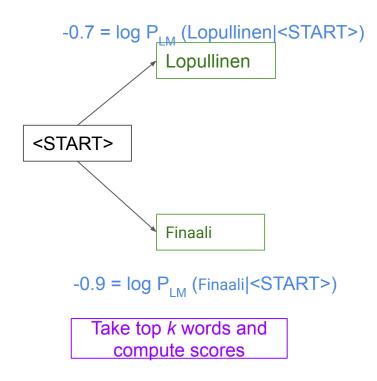
- <u>Core idea</u>: On each step of decoder, keep track of the <u>k most probable partial</u> translations (which we call <u>hypotheses</u>)
 - *k* is the beam size (in practice around 5 to 10)
- A hypothesis y_1, \dots, y_t has a score which is its log probability: $\operatorname{score}(y_1, \dots, y_t) = \log P_{\operatorname{LM}}(y_1, \dots, y_t | x) = \sum_{i=1}^t \log P_{\operatorname{LM}}(y_i | y_1, \dots, y_{i-1}, x)$
 - Scores are all negative, and higher score is better
 - We search for high-scoring hypotheses, tracking top *k* on each step
- Beam search is not guaranteed to find optimal solution
- But much more efficient than exhaustive search!

• Beam size = k = 2. Blue numbers = $\operatorname{score}(y_1, \ldots, y_t) = \sum_{i=1}^{t} \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$

<START>

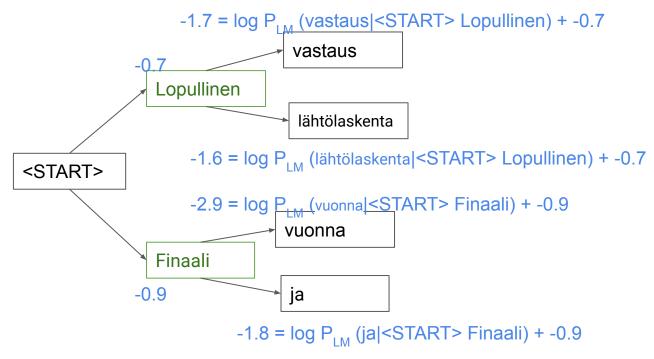
Calculate prob dist of next word

• Beam size = k = 2. Blue numbers = $\operatorname{score}(y_1, \ldots, y_t) = \sum_{i=1}^* \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$



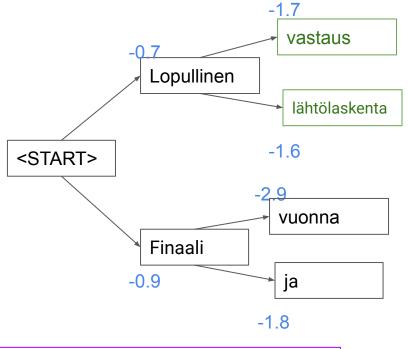
• Beam size = k = 2. Blue numbers =

$$\operatorname{score}(y_1,\ldots,y_t) = \sum_{i=1}^t \log P_{\operatorname{LM}}(y_i|y_1,\ldots,y_{i-1},x)$$



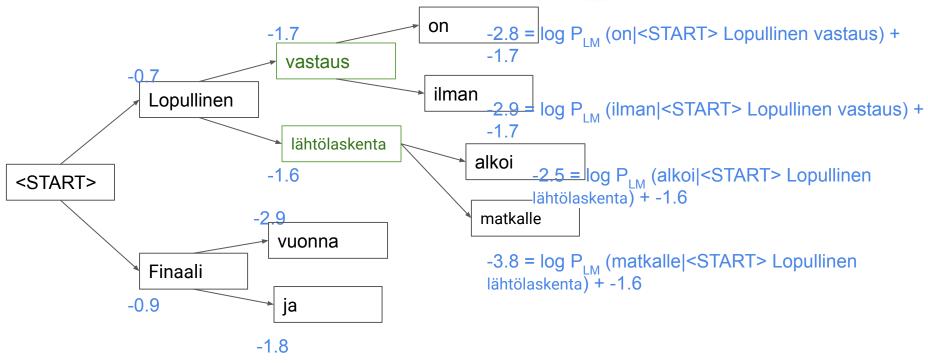
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{n} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



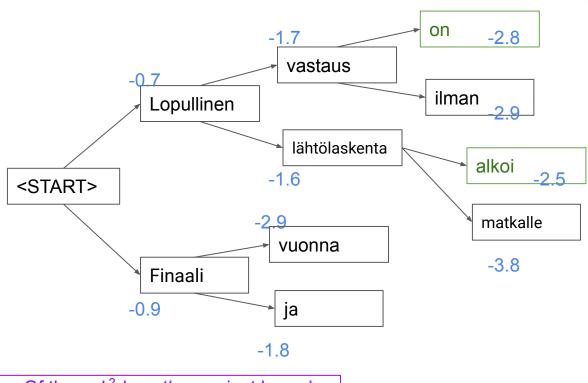
Of these k^2 hypotheses, just keep k with highest scores

• Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)}$

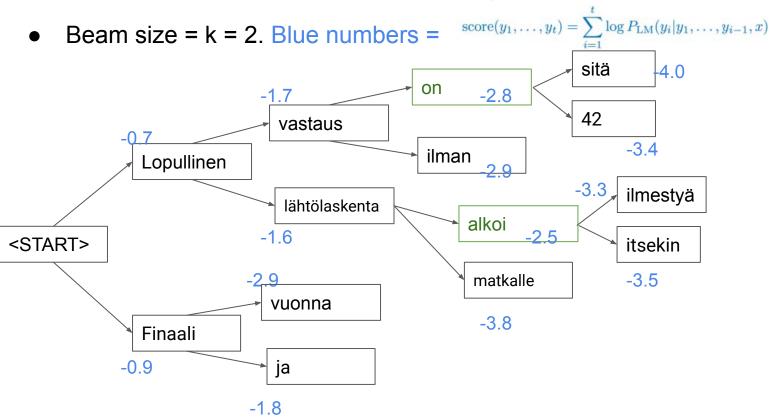


For each of the *k* hypotheses, find top *k* next words and calculate scores

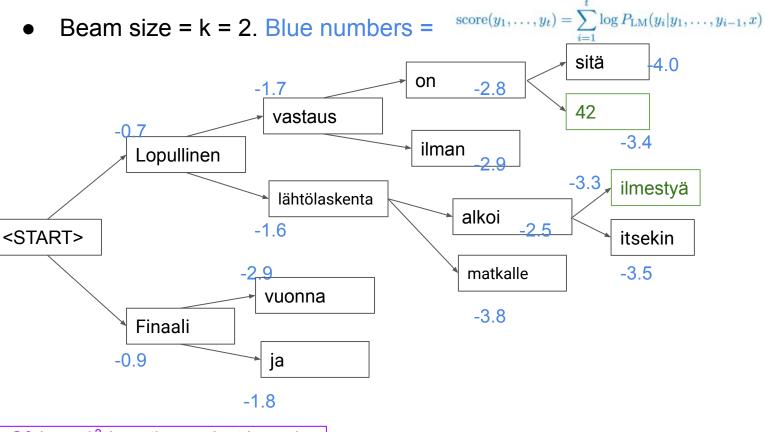
• Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)}$



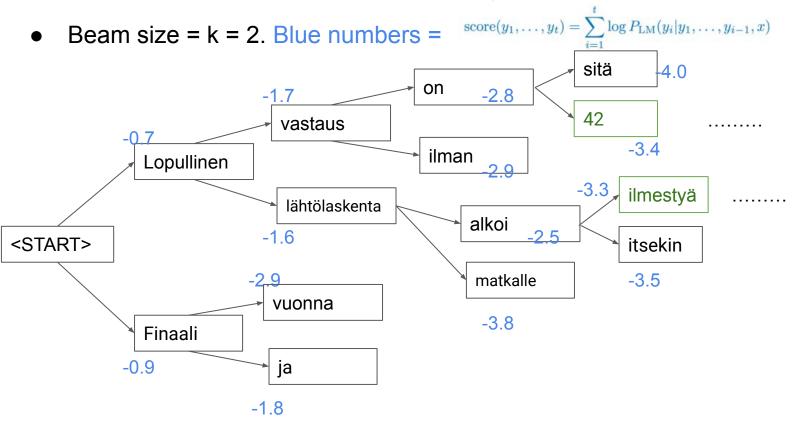
Of these k^2 hypotheses, just keep k with highest scores



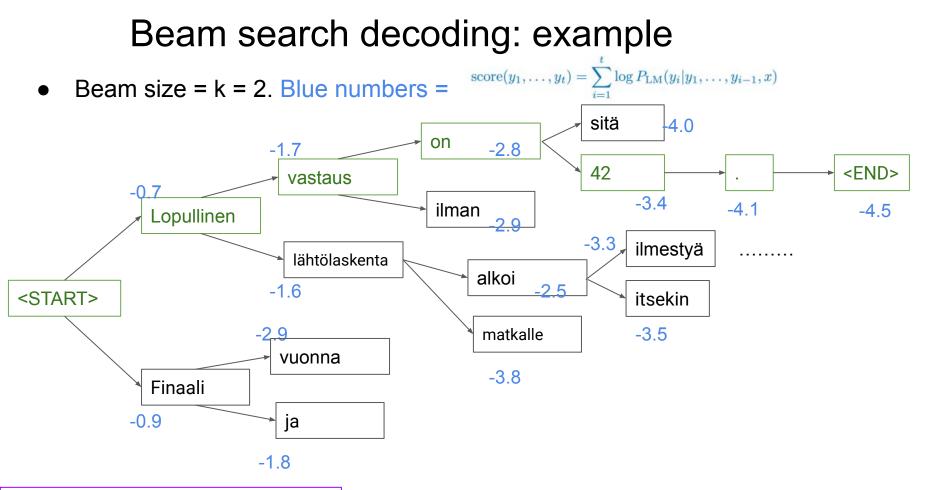
For each of the *k* hypotheses, find top *k* next words and calculate scores



Of these k^2 hypotheses, just keep k with highest scores



Continue until the <END> token



This is the top-scoring hypothesis! Backtrack to obtain the full hypothesis

Beam search decoding: stopping criterion

- In greedy decoding, usually we decode until the model produces a <END> token
 - For example: <START> Lopullinen vastaus on 42 . <END>
- In beam search decoding, different hypotheses may produce <END> tokens on different timesteps
 - When a hypothesis produces <END>, that hypothesis is complete.
 - Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
 - We reach timestep T (where T is some pre-defined cutoff), or
 - We have at least *n* completed hypotheses (where *n* is pre-defined cutoff)

Beam search decoding: finishing up

- We have our list of completed hypotheses.
- How to select top one with highest score?
- Each hypothesis y_1, \dots, y_t on our list has a score

score
$$(y_1, \dots, y_t) = \log P_{\text{LM}}(y_1, \dots, y_t | x) = \sum_{i=1}^t \log P_{\text{LM}}(y_i | y_1, \dots, y_{i-1}, x)$$

- <u>Problem with this</u>: longer hypotheses have lower scores
- <u>Fix</u>: Normalize by length. Use this to select top one instead:

$$\frac{1}{t}\sum_{i=1}^t \log P_{\mathrm{LM}}(y_i|y_1,\ldots,y_{i-1},x)$$

Advantages of NMT

NMT has many qualities:

- Fluent translations
 - Better use of context

- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized

- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

• NMT is difficult to interpret and control

- Hard to debug
- can't easily specify rules or guidelines for translation

- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs
 - Using common sense is still hard
 - NMT picks up biases in training data

• Using common sense is still hard

• NMT picks up biases in training data

Hän on sairaanhoitaja Hän on ohjelmoija	×	She's a nurse He's a programmer	
•	39/5000	u())	0 / •

Didn't specify gender

• Uninterpretable systems do strange things



Open in Google Translate

Feedback

Picture source:

https://www.vice.com/en_uk/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies Explanation: https://www.skynettoday.com/briefs/google-nmt-prophecies

• Out-Of-Vocabulary (OOV) words

words not in the vocabulary of the trained NMT model

- networks have fixed vocabulary
- poor translation of rare/unknown words

- How do we represent text in NMT?
- 1-hot encoding:
 - Lookup of word embedding for input
 - Probability distribution over vocabulary for output
- Large vocabularies
 - Increase network size
 - Decrease training and decoding speed
- Typical network vocabulary size: 10 000 100 000 symbols

		representation of "cat"		
vocabulary		1-hot vector embedding		
0	the	0	Γ0.1]	
1	cat	1		
2	is	0		
	.			
1024	mat	0		

- Translation is an **open-vocabulary** problem:
 - many training corpora contain millions of word types
 - productive word formation processes (compounding; derivation) allow formation and understanding of unseen words
 - names, numbers are morphologically simple, but open word classes

• Translation is an **open-vocabulary** problem:

- many training corpora contain millions of word types
- productive word formation processes (compounding; derivation) allow formation and understanding of unseen words
- names, numbers are morphologically simple, but open word classes

• Solution 1 - **Back-off Models**:

- 1. replace rare words with UNK at training time
- 2. when system produces UNK, translate with a back-off method, for example a dictionary

• What are the limitations with this method?

- Solution 1 Back-off Models:
 - 1. replace rare words with UNK at training time
 - 2. when system produces UNK, translate with a back-off method, for example a dictionary

- What are the limitations with this method?
 - **compounds**: hard to model 1-to-many relationships
 - **morphology**: hard to predict inflection with back-off dictionary
 - **names**: if alphabets differ, we need transliteration

• Can we do better?

- Solution 2 *wishlist*:
 - 1. open-vocabulary NMT: encode all words through small vocabulary
 - 2. encoding generalizes to unseen words
 - 3. small text size
 - 4. good translation quality

- Solution 2 *wishlist*:
 - 1. open-vocabulary NMT: encode all words through small vocabulary
 - 2. encoding generalizes to unseen words
 - 3. small text size
 - 4. good translation quality

• Subword units - Byte Pair Encoding (BPE) for word segmentation:

- Start with a vocabulary of **characters**.
- Most frequent ngram pairs \mapsto a new ngram.
- *hyperparameter*: when to stop \mapsto controls vocabulary size

- Subword units Byte Pair Encoding (BPE) for word segmentation:
 - Start with a vocabulary of **characters**.
 - Most frequent ngram pairs \mapsto a new ngram.
 - *hyperparameter*: when to stop \mapsto controls vocabulary size
- Example:

Dictionary

low	5
lower	2
newest	6
widest	3

Vocabulary

l, o, w, e, r, n, w, s, t, i, d

Start with all characters in dictionary

- Subword units Byte Pair Encoding (BPE) for word segmentation:
 - Start with a vocabulary of **characters**.
 - Most frequent ngram pairs \mapsto a new ngram.
 - *hyperparameter*: when to stop \mapsto controls vocabulary size
- Example:

Dictionary

low	5
lower	2
n e w es t	6
wid es t	3

Vocabulary I, o, w, e, r, n, w, s, t, i, d, **es**

Add a pair (e, s) with freq 9

- Subword units Byte Pair Encoding (BPE) for word segmentation:
 - Start with a vocabulary of **characters**.
 - Most frequent ngram pairs \mapsto a new ngram.
 - *hyperparameter*: when to stop \mapsto controls vocabulary size
- Example:

Dictionary

low	5
lower	2
n e w est	6
wid est	3

Vocabulary I, o, w, e, r, n, w, s, t, i, d, es, **est**

Add a pair (es, t) with freq 9

- Subword units Byte Pair Encoding (BPE) for word segmentation:
 - Start with a vocabulary of **characters**.
 - Most frequent ngram pairs \mapsto a new ngram.
 - *hyperparameter*: when to stop \mapsto controls vocabulary size
- Example:

Dictionary

lo w	5
lower	2
n e w est	6
w i d est	3

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es, est, **Io**

Add a pair (I, o) with freq 7

- Subword units Byte Pair Encoding (BPE) for word segmentation:
 - Automatically decide vocabs for NMT
 - Open-vocabulary: operations learned on training set can be applied to unknown words
 - compression of frequent character sequences improves efficiency
 - trade-off between text length and vocabulary size

lo w	5	
lo w e r	2	
n e w est	6	
w i d est	3	

Dictionary

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es, est, lo

 $\begin{array}{l} e \hspace{0.1cm} s \hspace{0.1cm} \rightarrow \hspace{0.1cm} es \\ es \hspace{0.1cm} t \hspace{0.1cm} \rightarrow \hspace{0.1cm} est \\ I \hspace{0.1cm} o \hspace{0.1cm} \rightarrow \hspace{0.1cm} Io \end{array}$

 Suppose we have the following new word: I o w e s t

- Subword units Byte Pair Encoding (BPE) for word segmentation:
 - Automatically decide vocabs for NMT
 - Open-vocabulary: operations learned on training set can be applied to unknown words
 - compression of frequent character sequences improves efficiency
 - trade-off between text length and vocabulary size

	5
lo w	5
lo w e r	2
n e w est	6
w i d est	3

Dictionary

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

es -	→ es
es t	\rightarrow est
$ 0 \rightarrow$	lo

Suppose we have the following new word:
 I o w es t

- Subword units Byte Pair Encoding (BPE) for word segmentation:
 - Automatically decide vocabs for NMT
 - Open-vocabulary: operations learned on training set can be applied to unknown words
 - compression of frequent character sequences improves efficiency
 - trade-off between text length and vocabulary size

Dictionary		
lo w	5	
lo w e r	2	
n e w est	6	
w i d est	3	

Dictionary

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es, est, lo

 $e s \rightarrow es$ $es t \rightarrow est$ $| o \rightarrow | o$

Suppose we have the following new word:
 I o w est

- Subword units Byte Pair Encoding (BPE) for word segmentation:
 - Automatically decide vocabs for NMT
 - Open-vocabulary: operations learned on training set can be applied to unknown words
 - compression of frequent character sequences improves efficiency
 - trade-off between text length and vocabulary size

Diotionaly		
lo w	5	
lo w e r	2	
n e w est	6	
w i d est	3	

Dictionary

Vocabulary

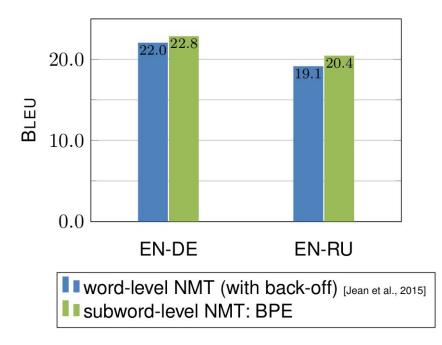
I, o, w, e, r, n, w, s, t, i, d, es, est, lo

$$e s \rightarrow es$$

 $es t \rightarrow est$
 $l o \rightarrow lo$

 Suppose we have the following new word: lo w est

Byte Pair Encoding (BPE) Translation quality



Byte Pair Encoding (BPE) Examples

system	sentence
source	health research institutes
reference	Gesundheitsforschungsinstitute
word-level (with back-off)	Forschungsinstitute
BPE	Gesundheits forsch ungsin stitute
source	rakfisk
reference	ракфиска (rakfiska)
word-level (with back-off)	rakfisk \rightarrow UNK \rightarrow rakfisk
BPE	$rak f isk \rightarrow pak \phi ucka (rak f iska)$

Byte Pair Encoding (BPE)

- BPE-level subword segmentation is currently the most widely used technique for open-vocabulary NMT
- BPE allows open vocabulary
 - how well it generalizes is still an open question

- Segmentation Variants:
 - morphologically motivated subword units [Sánchez-Cartagena and Toral, 2016, Tamchyna et al., 2017, Huck et al., 2017, Pinnis et al., 2017]
 - probabilistic segmentation and sampling [Kudo, 2018]
 - fully character-level Models [Ling et al. 2015, Lee et al. 2016]

Multilingual neural MT

Transfer learning

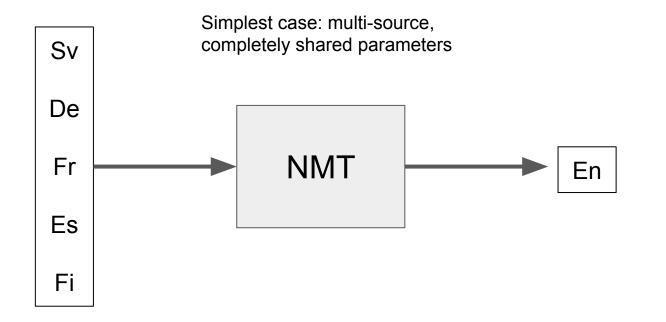
- Knowledge transfer between languages and language pairs
- Make use of linguistic relationships of languages
- Practical reason: support low resource scenarios (languages and domains)

Zero-shot translation

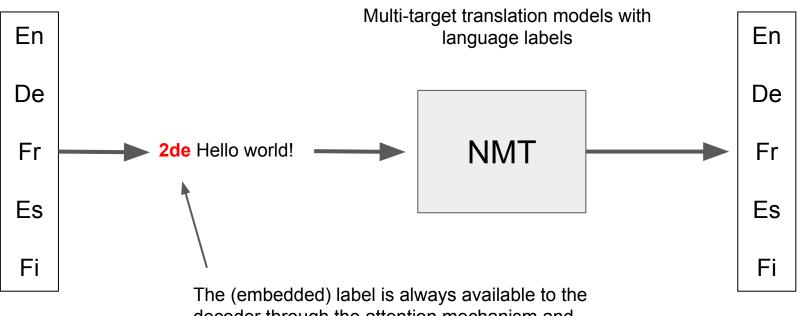
- Translate between languages without explicit training examples
- Unseen task trained through multi-task learning

Approaches differ in the amount of parameter sharing

Language labels and completely shared parameters

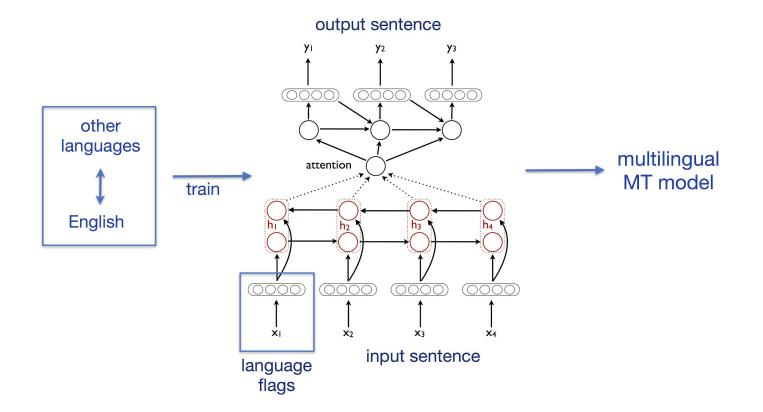


Language labels and completely shared parameters



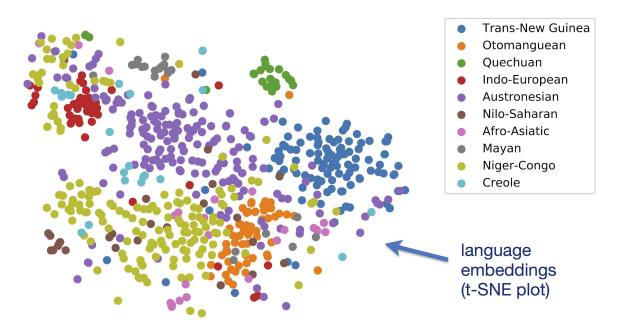
decoder through the attention mechanism and triggers the German parameters of the decoder

Emerging language spaces



Emerging language spaces

Rough clusters of language families



Emerging Language Spaces Learned From Massively Multilingual Corpora (https://arxiv.org/abs/1802.00273)

Scaling up to many languages

fails!

BLEU	aln	bar	bre	chu	eng	fao	fry	glv	hns	isl	
aln bar bre chu	3.73 1.26 7.36	2.95 0.66 3.54	4.75 4.19 4.97		17.38 13.99 9.72 20.10	8.63 7.00 1.36 9.48	5.38 4.85 0.00 7.78	4.27 3.98 2.41 4.93	4.00 3.60 1.29 4.09	5.52 4.79 1.25 6.18	zero-shot
	11.49	6.44	5.46	7.93		13.77		5.38	5.60	9.48	
hns isl					7.87 14.51		superv	vised			

Language labels and completely shared parameters

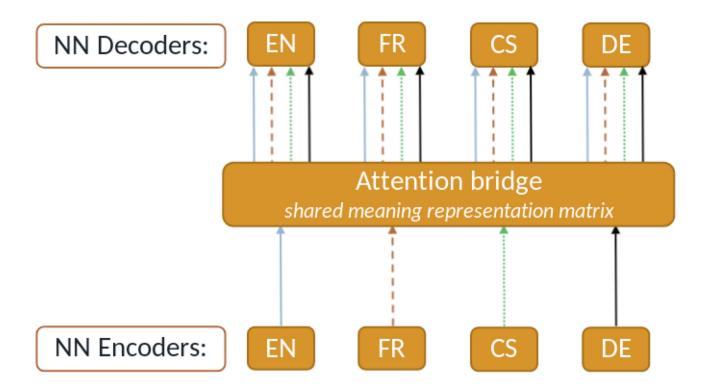
Transfer and zero-shot with language labels

- Very easy and surprisingly effective (especially for related languages)
- Improves low-resource scenarios
- Enables zero-shot translation (but only) if source and target language appear in different combinations with other languages during training
- Single model for many languages, mixed language support

Limits

- Capacity bottleneck: doesn't scale to many languages
- Typically no improvement for high-resource languages

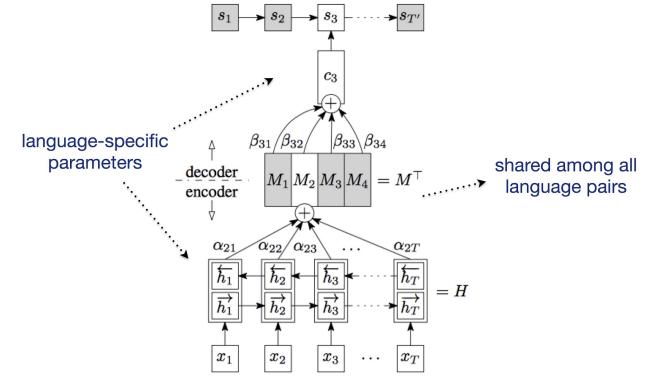
Multilingual NMT with partially shared parameters



Multilingual NMT with a Language-Independent Attention Bridge, Raúl Vázquez, Alessandro Raganato, Jörg Tiedemann, Mathias Creutz (Rep4NLP 2019)

https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg

The attention bridge model



Architecture proposed by Cífka and Bojar (2018).

Our implementation in OpenNMT-py (MTM2018)

Focus of attention

we cannot afford to lose more of the momentum that existed at the beginning of the N_ ine_ ties .

(a) k = 1

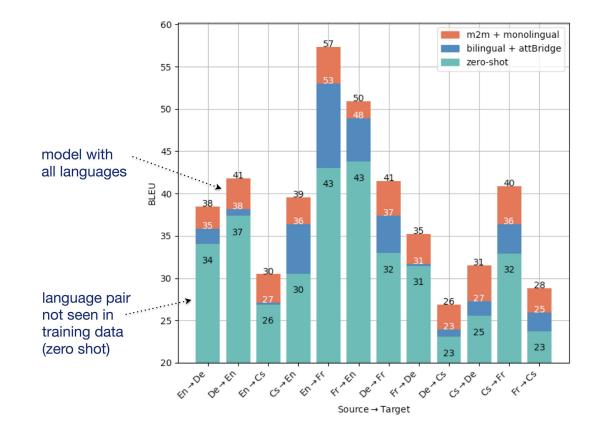
we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties . we cannot afford to lose more of the momentum that existed at the beginning of the N_ine_ties .

(b) k = 10

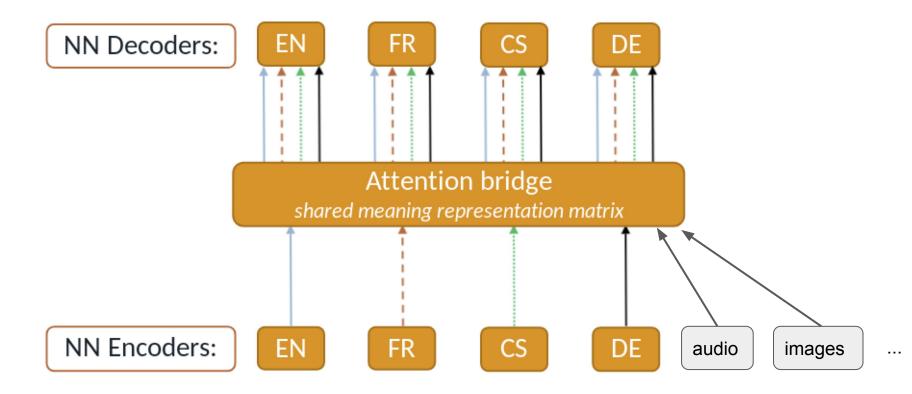
we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N Ine ties . we cannot afford to loss more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties . we cannot afford to lose more of the momentum that existed at the beginning of the N ine we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot affore to lose more of the momentum that existed at the beginning of the N ine ties we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more the momentum that existed at the beginning of the N ine ties. cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties we cannot afford lose more of the momentum that existed at the beginning of the N ine ties. ve cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. afford to lose more of the momentum that existed at the beginning of the N ine ties. e cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. e cannot afford to lose more of the momentum that existed at the beginning of the N ine ties . we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. e cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. afford to lose more of the momentum that existed at the beginning of the N ine ties we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. armort afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties. we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties we cannot afford to lose more of the momentum that existed at the beginning of the N ine ties.

(d) k = 50

Multilingual image caption translation



Multi-task learning and multimodality



Hands on ...

The attention bridge implementation: <u>https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg</u>

Tutorial with some practical tips about how to train a neural machine translation system: <u>https://github.com/neubig/nmt-tips</u>