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What will we cover?
Preliminaries

Common architectures

Training and decoding

Multilingual translation models

Multi-task learning and the flexibridge model

Important things we do not cover: fine-tuning / domain adaptation, 
document-level models, unsupervised MT, hyperparameter optimisation, data 
selection / augmentation / distillation, convolutional models, multi-source, factors, 
...
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What is machine translation?
Natural task

● Naturally occurring data (no annotation needed)
● Real world application and big demand

Some issues

● Typically there is no single-best solution (ambiguity, interpretation, context)
● Not clear what is a good translation (the challenge of evaluation)
● Limited data for most language pairs and domains (the challenge of training)



Practical considerations
Traditional modeling assumptions

● Text input and text output
● Translate sentences instead of documents (ignore discourse-wide context)
● Tokenize sentences into sequences of words or subword units
● Any training data is good and our idea about “domain” is very fuzzy ...

Evaluation approaches

● Comparison to human reference translations (rough metrics)
● Subjective manual evaluation with some statistical analyses
● Task-based evaluation (keystrokes for post-editing efforts …)



The machine translation hype cycle

from Philipp Koehn: Neural Machine Translation



What is neural machine translation?
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Training data



http://opus.nlpl.eu



OpusTools (https://pypi.org/project/opustools/)

Convenient tools for accessing and processing OPUS data:

● opus_read: read parallel data sets and convert to different output formats
● opus_express: Create test/dev/train sets from OPUS data.
● opus_cat: extract given OPUS document from release data
● opus_get: download files from OPUS
● opus_langid: add language ids to sentences in xml files in zip archives
● opus_filter: filter out noise and select domain-specific data



Other common pre-processing tools

● Moses corpus cleaning script

training/clean-corpus-n.perl

● Moses normalization tools

tokenizer/replace-unicode-punctuation.perl
tokenizer/remove-non-printing-char.perl
tokenizer/normalize-punctuation.perl

● Basic tokenization, e.g. Moses tools:

tokenizer/tokenizer.perl -a -threads 4 -l fi

https://github.com/moses-smt/mosesdecoder
pip install mosestokenizer
pip install polyglot
pip install sacremoses

pip install subword-nmt
pip install sentencepiece
pip install tokenizers



Test data and benchmarks
Annual conference on machine translation WMT (http://statmt.org/wmt20/)

● News translation tasks (http://matrix.statmt.org)
● Special domain tasks (biomedical, similar languages, chat)
● Metrics task, post-editing, quality estimation, ...

Spoken language translation (IWSLT) (http://iwslt.org)

● Speech-to-text translation (e.g. English audio to German text)
● Different domains (speeches, conversational settings, …)

Test suites for various linguistic phenomena (agreement, ambiguity, discourse, …)



A taxonomy of MT evaluation approaches

Lucia Specia: Automatic Evaluation of Machine Translation: Moving Away from Word Matching Metrics (Gala presentation, 2016)



General idea: Train a conditional language model

Training = find optimal 
model parameters

Translation = decoding



Modelling Translation
● Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network

Suppose we are translating English to Finnish

● We want to find best Finnish sentence                            , given a English sentence

● We can express translation as a probabilistic model:

                         

● Expanding using the chain rule gives:

             



Differences Between Translation and 
Language Model
● Target-side language model:

● Translation model:

● We could just treat sentence pair as one long sequence, but:
○ We do not care about 
○ We may want different vocabulary, network architecture for source text

   Use separate RNNs for source and target.
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● The neural network architecture is called sequence-to-sequence (aka 

seq2seq) or encoder-decoder and usually it involves two RNNs.
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Neural Machine Translation (NMT)

● The neural network architecture is called sequence-to-sequence (aka 
seq2seq) or encoder-decoder and usually it involves two RNNs.

● Last encoder hidden-state “summarises” source sentence

● Sequence-to-sequence is versatile! It is useful for more than just MT
➢ Many NLP tasks can be phrased as sequence-to-sequence:

○ Summarization (long text → short text)
○ Dialogue (previous utterances → next utterance)
○ Parsing (input text → output parse as sequence)
○ Code generation (natural language → Python code)
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Summary vector as information bottleneck
● Last encoder hidden-state “summarises” source sentence.
● This needs to capture all information about the source sentence.

● Problem: Information bottleneck! 
● Fixed sized representation degrades as sentence length increases



Attention
● Attention provides a solution to the bottleneck problem.

● Core idea: on each step of the decoder, use direct connection to the encoder 
to focus on a particular part of the source sequence
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Sequence-to-sequence with attention
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Attention scores

compute softmax to turn the 
scores into a probability 
distribution

On this decoder timestep, 
we’re mostly focusing on 
the encoder hidden state 
(”ultimate”)

Attention distribution



Sequence-to-sequence with attention

The ultimate answer is 42 . <START>

source sentence (input)

Attention scores

Attention distribution

Attention output Use the attention distribution to take a weighted 
sum of the encoder hidden states.

The attention output mostly contains information 
from the hidden states that received high 
attention.



Sequence-to-sequence with attention
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use to compute y1 as before
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Sequence-to-sequence with attention

The ultimate answer is 42 . <START> Lopullinen
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Attention distribution
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Sequence-to-sequence with attention

The ultimate answer is 42 . <START> Lopullinen vastaus

Lopullinen vastaus on

source sentence (input)

Attention scores

Attention distribution

Attention output

Concatenate 
attention output with 
decoder hidden 
state, then use to 
compute y3 as 
before

y1 y2 y3

...
...
...
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Attention: in equations

● We have encoder hidden states
● On timestep t, we have decoder hidden state
● We get the attention scores        for this step:

● We take softmax to get the attention distribution        for this step (this is a probability distribution and sums to 1)

● We use       to take a weighted sum of the encoder hidden states to get the attention output 

● Finally we concatenate the attention output        with the decoder hidden state      and proceed as in 
the non-attention seq2seq model

h1 h2 h3 h4 h5 h6
s1

Attention scores

Attention distribution

Attention output

... ... ... ... ... ... ...

Lopullinen

y
1
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Attention is great
● Attention significantly improves NMT performance

○ It’s very useful to allow decoder to focus on certain parts of the source

● Attention solves the bottleneck problem
○ Attention allows decoder to look directly at source; bypass bottleneck

● Attention provides some interpretability:
○ By inspecting attention distribution, we can see what the decoder was focusing on

The ultimate answer is 42 .

Lopullinen

vastaus

on

42

.
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● We’ve seen that attention is a great way to improve the sequence-to-sequence 

model for Machine Translation.
● However: You can use attention in many architectures (not just seq2seq) and 

many tasks (not just MT)

● More general definition of attention:

Given a set of vector values, and a vector query, attention is a technique to 
compute a weighted sum of the values, dependent on the query.

● We sometimes say that the query attends to the values.
● For example, in the seq2seq + attention model, each decoder hidden state 

(query) attends to all the encoder hidden states (values).



Attention is a general Deep Learning technique
● More general definition of attention:

Given a set of vector values, and a vector query, attention is a technique to 
compute a weighted sum of the values, dependent on the query.

● Intuition:
● The weighted sum is a selective summary of the information contained in 

the values, where the query determines which values to focus on.

● Attention is a way to obtain a fixed-size representation of an arbitrary set of 
representations (the values), dependent on some other representation (the 
query).
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There are several attention variants
● We have some values                              and a query

● Attention always involves:
1. Computing the attention scores

2. Taking softmax to get attention distribution ⍺:

3. Using attention distribution to take weighted sum of values:

thus obtaining the attention output        (sometimes called the context vector)

There are multiple 
ways to do this
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Attention variants
● There are several ways you can compute the attention scores                 from 

the values                               and a query                      
● Basic dot-product attention:

○ Note: this assumes
○ This is the version we saw earlier

● Multiplicative attention: 
○ Where                            is a weight matrix

● Additive attention: 
○ Where                                              are weight matrices and               is a weight vector
○ d3 (the attention dimensionality) is a hyperparameter

More information:
“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention

“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf

http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
https://arxiv.org/pdf/1703.03906.pdf
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Sequence-to-sequence with attention

The ultimate answer is 42 . <START> Lopullinen vastaus

Lopullinen vastaus on

source sentence (input)

Attention scores

Attention distribution

Attention output

y1 y2 y3

...

...

...

● Are we forgetting something behind? 
Attention decisions are made independently (which is suboptimal)



Attention feeding
● Attention decisions should be made jointly taking into account past attention 
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Attention feeding

The ultimate answer is 42 . <START> Lopullinen vastaus

Lopullinen vastaus on

source sentence (input)

Attention scores

Attention distribution

Attention output

y1 y2 y3

...
...
...

● Attention decisions should be made jointly taking into account past attention information:
○ we hope to make the model fully aware of previous attention choices
○ usually the attentional vector is concatenated with the input at the next time step

Previous 
attention 
output



Greedy decoding

● We saw how to generate (or “decode”) the target sentence by taking argmax 
on each step of the decoder

● This is greedy decoding (take most probable word on each step)
● Problems with this method?

<START> Lopullinen vastaus on 42 .

Lopullinen vastaus on 42 . <END>
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Problems with greedy decoding

● Greedy decoding has no way to undo decisions!

➢ Input: The ultimate answer is 42 .     (Lopullinen vastaus on 42 .)

           Lopullinen _ 

           Lopullinen lähtölaskenta _   (no going back now...)

● How to fix this?



Exhaustive search decoding

● Ideally we want to find a (length T) translation y that maximizes

● We could try computing all possible sequences y
○ This means that on each step t of the decoder, we’re tracking Vt possible partial translations, 

where V is vocab size
○ This O(VT) complexity is far too expensive!



Beam search decoding

● Core idea: On each step of decoder, keep track of the k most probable partial 
translations (which we call hypotheses)

○ k is the beam size (in practice around 5 to 10)

● A hypothesis y1,...,yt has a score which is its log probability:

○ Scores are all negative, and higher score is better
○ We search for high-scoring hypotheses, tracking top k on each step

● Beam search is not guaranteed to find optimal solution
● But much more efficient than exhaustive search!



Beam search decoding: example

● Beam size = k = 2. Blue numbers =

<START>

Calculate prob dist 
of next word



<START>

Take top k words and 
compute scores

Lopullinen

Finaali

-0.7 = log PLM (Lopullinen|<START>)

-0.9 = log PLM (Finaali|<START>)

● Beam size = k = 2. Blue numbers =

Beam search decoding: example
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For each of the k hypotheses, find top 
k next words and calculate scores

Lopullinen

Finaali

-0.7
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vastaus
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-1.6 = log PLM (lähtölaskenta|<START> Lopullinen) + -0.7

vuonna
-2.9 = log PLM (vuonna|<START> Finaali) + -0.9

-1.8 = log PLM (ja|<START> Finaali) + -0.9

ja

-1.7 = log PLM (vastaus|<START> Lopullinen) + -0.7
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Beam search decoding: example

<START>

For each of the k hypotheses, find top 
k next words and calculate scores

Lopullinen
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vastaus
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-2.9 
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on
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-2.8 = log PLM (on|<START> Lopullinen vastaus) + 
-1.7

-2.9 = log PLM (ilman|<START> Lopullinen vastaus) + 
-1.7

-2.5 = log PLM (alkoi|<START> Lopullinen 
lähtölaskenta) + -1.6

-3.8 = log PLM (matkalle|<START> Lopullinen 
lähtölaskenta) + -1.6
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Beam search decoding: example

<START>

Continue until the <END> token

Lopullinen
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ilmestyä

itsekin

-4.0 

-3.4 

-3.3 

-3.5 

………

………



<START>

This is the top-scoring hypothesis!
Backtrack to obtain the full hypothesis

Lopullinen

Finaali

-0.7

-0.9

vastaus

lähtölaskenta

-2.9 
vuonna

-1.6 

-1.8 

ja

-1.7 

● Beam size = k = 2. Blue numbers =

on

ilman

alkoi

matkalle

-2.8 

-2.9

-2.5 

-3.8

sitä

42

ilmestyä

itsekin

-4.0 

-3.4 

-3.3 

-3.5 

………

. <END>

-4.1 -4.5 

Beam search decoding: example



Beam search decoding: stopping criterion

● In greedy decoding, usually we decode until the model produces a <END> 
token

○ For example: <START> Lopullinen vastaus on 42 . <END>

● In beam search decoding, different hypotheses may produce <END> tokens 
on different timesteps

○ When a hypothesis produces <END>, that hypothesis is complete.
○ Place it aside and continue exploring other hypotheses via beam search.

● Usually we continue beam search until:
○ We reach timestep T (where T is some pre-defined cutoff), or
○ We have at least n completed hypotheses (where n is pre-defined cutoff)



Beam search decoding: finishing up

● We have our list of completed hypotheses.
● How to select top one with highest score?

● Each hypothesis y1,...,yt on our list has a score

● Problem with this: longer hypotheses have lower scores

● Fix: Normalize by length. Use this to select top one instead:



Advantages of NMT

NMT has many qualities:

● Fluent translations
○ Better use of context

● A single neural network to be optimized end-to-end
○ No subcomponents to be individually optimized

● Requires much less human engineering effort
○ No feature engineering
○ Same method for all language pairs



Disadvantages of NMT

● NMT is difficult to interpret and control
○ Hard to debug 
○ can’t easily specify rules or guidelines for translation

● Many difficulties remain:
○ Out-of-vocabulary words
○ Domain mismatch between train and test data
○ Maintaining context over longer text
○ Low-resource language pairs
○ Using common sense is still hard
○ NMT picks up biases in training data



Disadvantages of NMT

● Using common sense is still hard



Disadvantages of NMT

● NMT picks up biases in training data

Didn’t specify gender



Disadvantages of NMT

● Uninterpretable systems do strange things

Picture source: 
https://www.vice.com/en_uk/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
Explanation: https://www.skynettoday.com/briefs/google-nmt-prophecies

https://www.vice.com/en_uk/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
https://www.skynettoday.com/briefs/google-nmt-prophecies


Disadvantages of NMT

● Out-Of-Vocabulary (OOV) words
words not in the vocabulary of the trained NMT model

○ networks have fixed vocabulary
○ poor translation of rare/unknown words



Open-Vocabulary Neural Machine Translation
● How do we represent text in NMT?
◽ 1-hot encoding:

○ Lookup of word embedding for input
○ Probability distribution over vocabulary for output

◽ Large vocabularies
○ Increase network size
○ Decrease training and decoding speed

◽ Typical network vocabulary size: 10 000 - 100 000 symbols



Open-Vocabulary Neural Machine Translation

● Translation is an open-vocabulary problem:
○ many training corpora contain millions of word types
○ productive word formation processes (compounding; derivation) allow formation and 

understanding of unseen words
○ names, numbers are morphologically simple, but open word classes



Open-Vocabulary Neural Machine Translation

● Translation is an open-vocabulary problem:
○ many training corpora contain millions of word types
○ productive word formation processes (compounding; derivation) allow formation and 

understanding of unseen words
○ names, numbers are morphologically simple, but open word classes

● Solution 1 - Back-off Models:
1. replace rare words with UNK at training time
2. when system produces UNK, translate with a back-off method, for example a dictionary

● What are the limitations with this method?



Open-Vocabulary Neural Machine Translation

● Solution 1 - Back-off Models:
1. replace rare words with UNK at training time
2. when system produces UNK, translate with a back-off method, for example a dictionary

● What are the limitations with this method?
○ compounds: hard to model 1-to-many relationships
○ morphology: hard to predict inflection with back-off dictionary
○ names: if alphabets differ, we need transliteration

● Can we do better? 



Open-Vocabulary Neural Machine Translation

● Solution 2 - wishlist:
1. open-vocabulary NMT: encode all words through small vocabulary
2. encoding generalizes to unseen words
3. small text size
4. good translation quality



Open-Vocabulary Neural Machine Translation

● Solution 2 - wishlist:
1. open-vocabulary NMT: encode all words through small vocabulary
2. encoding generalizes to unseen words
3. small text size
4. good translation quality

● Subword units - Byte Pair Encoding (BPE) for word segmentation:
○ Start with a vocabulary of characters.
○ Most frequent ngram pairs ↦ a new ngram.
○ hyperparameter: when to stop ↦ controls vocabulary size



Subword units - Byte Pair Encoding (BPE)
● Subword units - Byte Pair Encoding (BPE) for word segmentation:

○ Start with a vocabulary of characters.
○ Most frequent ngram pairs ↦ a new ngram.
○ hyperparameter: when to stop ↦ controls vocabulary size

● Example:

Dictionary                              Vocabulary
                                              l, o, w, e, r, n, w, s, t, i, d 

Start with all characters in 
dictionary

l o w 5

l o w e r 2

n e w e s t 6

w i d e s t 3



Subword units - Byte Pair Encoding (BPE)
● Subword units - Byte Pair Encoding (BPE) for word segmentation:

○ Start with a vocabulary of characters.
○ Most frequent ngram pairs ↦ a new ngram.
○ hyperparameter: when to stop ↦ controls vocabulary size

● Example:

Dictionary                              Vocabulary
                                              l, o, w, e, r, n, w, s, t, i, d, es 

Add a pair (e, s) with freq 9

l o w 5

l o w e r 2

n e w es t 6

w i d es t 3



Subword units - Byte Pair Encoding (BPE)
● Subword units - Byte Pair Encoding (BPE) for word segmentation:

○ Start with a vocabulary of characters.
○ Most frequent ngram pairs ↦ a new ngram.
○ hyperparameter: when to stop ↦ controls vocabulary size

● Example:

Dictionary                              Vocabulary
                                              l, o, w, e, r, n, w, s, t, i, d, es, est

Add a pair (es, t) with freq 9

l o w 5

l o w e r 2

n e w est 6

w i d est 3



Subword units - Byte Pair Encoding (BPE)
● Subword units - Byte Pair Encoding (BPE) for word segmentation:

○ Start with a vocabulary of characters.
○ Most frequent ngram pairs ↦ a new ngram.
○ hyperparameter: when to stop ↦ controls vocabulary size

● Example:

Dictionary                              Vocabulary
                                              l, o, w, e, r, n, w, s, t, i, d, es, est, lo

Add a pair (l, o) with freq 7

lo w 5

lo w e r 2

n e w est 6

w i d est 3



Subword units - Byte Pair Encoding (BPE)
● Subword units - Byte Pair Encoding (BPE) for word segmentation:

○ Automatically decide vocabs for NMT
○ Open-vocabulary: operations learned on training set can be applied to unknown words
○ compression of frequent character sequences improves efficiency
○ trade-off between text length and vocabulary size

Dictionary                                 Vocabulary
                                              l, o, w, e, r, n, w, s, t, i, d, es, est, lo

  

● Suppose we have the following new word:
l o w e s t

lo w 5

lo w e r 2

n e w est 6

w i d est 3

e s  → es
es t   → est
l o → lo



Subword units - Byte Pair Encoding (BPE)
● Subword units - Byte Pair Encoding (BPE) for word segmentation:

○ Automatically decide vocabs for NMT
○ Open-vocabulary: operations learned on training set can be applied to unknown words
○ compression of frequent character sequences improves efficiency
○ trade-off between text length and vocabulary size

Dictionary                                 Vocabulary
                                              l, o, w, e, r, n, w, s, t, i, d, es, est, lo

  

● Suppose we have the following new word:
l o w es t

lo w 5

lo w e r 2

n e w est 6

w i d est 3

e s  → es
es t   → est
l o → lo



Subword units - Byte Pair Encoding (BPE)
● Subword units - Byte Pair Encoding (BPE) for word segmentation:

○ Automatically decide vocabs for NMT
○ Open-vocabulary: operations learned on training set can be applied to unknown words
○ compression of frequent character sequences improves efficiency
○ trade-off between text length and vocabulary size

Dictionary                                 Vocabulary
                                              l, o, w, e, r, n, w, s, t, i, d, es, est, lo

  

● Suppose we have the following new word:
l o w est

lo w 5

lo w e r 2

n e w est 6

w i d est 3

e s  → es
es t   → est
l o → lo



Subword units - Byte Pair Encoding (BPE)
● Subword units - Byte Pair Encoding (BPE) for word segmentation:

○ Automatically decide vocabs for NMT
○ Open-vocabulary: operations learned on training set can be applied to unknown words
○ compression of frequent character sequences improves efficiency
○ trade-off between text length and vocabulary size

Dictionary                                 Vocabulary
                                              l, o, w, e, r, n, w, s, t, i, d, es, est, lo

  

● Suppose we have the following new word:
lo w est

lo w 5

lo w e r 2

n e w est 6

w i d est 3

e s  → es
es t   → est
l o → lo



Byte Pair Encoding  (BPE) 
Translation quality



Byte Pair Encoding  (BPE) 
Examples



Byte Pair Encoding  (BPE) 

● BPE-level subword segmentation is currently the most widely used
technique for open-vocabulary NMT

● BPE allows open vocabulary
○  how well it generalizes is still an open question

● Segmentation Variants:
○ morphologically motivated subword units [Sánchez-Cartagena and Toral, 2016, Tamchyna et 

al., 2017, Huck et al., 2017, Pinnis et al., 2017]
○ probabilistic segmentation and sampling [Kudo, 2018]
○ fully character-level Models [Ling et al. 2015, Lee et al. 2016]



Multilingual neural MT
Transfer learning

● Knowledge transfer between languages and language pairs
● Make use of linguistic relationships of languages
● Practical reason: support low resource scenarios (languages and domains)

Zero-shot translation

● Translate between languages without explicit training examples
● Unseen task trained through multi-task learning

Approaches differ in the amount of parameter sharing



Language labels and completely shared parameters

NMT

Sv

De

Fr

Es

Fi

En

Simplest case: multi-source, 
completely shared parameters



Language labels and completely shared parameters

NMT

En

De

Fr

Es

Fi

Multi-target translation models with 
language labels En

De

Fr

Es

Fi

2de Hello world!

The (embedded) label is always available to the 
decoder through the attention mechanism and 
triggers the German parameters of the decoder



Emerging language spaces



Emerging language spaces

Emerging Language Spaces Learned From Massively Multilingual Corpora (https://arxiv.org/abs/1802.00273)

https://arxiv.org/abs/1802.00273


Scaling up to many languages … fails!

BLEU



Language labels and completely shared parameters
Transfer and zero-shot with language labels

● Very easy and surprisingly effective (especially for related languages)
● Improves low-resource scenarios
● Enables zero-shot translation (but only) if source and target language appear 

in different combinations with other languages during training
● Single model for many languages, mixed language support

Limits

● Capacity bottleneck: doesn’t scale to many languages
● Typically no improvement for high-resource languages



Multilingual NMT with partially shared parameters

Multilingual NMT with a Language-Independent Attention Bridge, Raúl Vázquez, Alessandro Raganato, Jörg Tiedemann, Mathias Creutz (Rep4NLP 2019)

https://www.aclweb.org/anthology/W19-4305.pdf
https://www.aclweb.org/anthology/people/r/raul-vazquez/
https://www.aclweb.org/anthology/people/a/alessandro-raganato/
https://www.aclweb.org/anthology/people/j/jorg-tiedemann/
https://www.aclweb.org/anthology/people/m/mathias-creutz/


The attention bridge model

https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg



Focus of attention



Multilingual image caption translation



Multi-task learning and multimodality

audio images ...



Hands on …
The attention bridge implementation:
https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg

Tutorial with some practical tips about how to train a neural machine translation system:
https://github.com/neubig/nmt-tips

https://github.com/Helsinki-NLP/OpenNMT-py/tree/att-brg
https://github.com/neubig/nmt-tips

