#!/usr/bin/env python # -*- coding: utf-8 -*- """ Pre-process Data / features files and build vocabulary """ import argparse import os import glob import sys import torch from onmt.utils.logging import init_logger, logger import onmt.inputters as inputters import onmt.opts as opts def check_existing_pt_files(opt): """ Checking if there are existing .pt files to avoid tampering """ # We will use glob.glob() to find sharded {train|valid}.[0-9]*.pt # when training, so check to avoid tampering with existing pt files # or mixing them up. for t in ['train', 'valid', 'vocab']: pattern = opt.save_data + '.' + t + '*.pt' if glob.glob(pattern): sys.stderr.write("Please backup existing pt file: %s, " "to avoid tampering!\n" % pattern) sys.exit(1) def parse_args(): """ Parsing arguments """ parser = argparse.ArgumentParser( description='preprocess.py', formatter_class=argparse.ArgumentDefaultsHelpFormatter) opts.add_md_help_argument(parser) opts.preprocess_opts(parser) opt = parser.parse_args() torch.manual_seed(opt.seed) check_existing_pt_files(opt) return opt def build_save_in_shards(src_corpus, tgt_corpus, fields, corpus_type, opt): """ Divide the big corpus into shards, and build dataset separately. This is currently only for data_type=='text'. The reason we do this is to avoid taking up too much memory due to sucking in a huge corpus file. To tackle this, we only read in part of the corpus file of size `max_shard_size`(actually it is multiples of 64 bytes that equals or is slightly larger than this size), and process it into dataset, then write it to disk along the way. By doing this, we only focus on part of the corpus at any moment, thus effectively reducing memory use. According to test, this method can reduce memory footprint by ~50%. Note! As we process along the shards, previous shards might still stay in memory, but since we are done with them, and no more reference to them, if there is memory tight situation, the OS could easily reclaim these memory. If `max_shard_size` is 0 or is larger than the corpus size, it is effectively preprocessed into one dataset, i.e. no sharding. NOTE! `max_shard_size` is measuring the input corpus size, not the output pt file size. So a shard pt file consists of examples of size 2 * `max_shard_size`(source + target). """ corpus_size = os.path.getsize(src_corpus) if corpus_size > 10 * (1024 ** 2) and opt.max_shard_size == 0: logger.info("Warning. The corpus %s is larger than 10M bytes, " "you can set '-max_shard_size' to process it by " "small shards to use less memory." % src_corpus) if opt.max_shard_size != 0: logger.info(' * divide corpus into shards and build dataset ' 'separately (shard_size = %d bytes).' % opt.max_shard_size) ret_list = [] src_iter = inputters.ShardedTextCorpusIterator( src_corpus, opt.src_seq_length_trunc, "src", opt.max_shard_size) tgt_iter = inputters.ShardedTextCorpusIterator( tgt_corpus, opt.tgt_seq_length_trunc, "tgt", opt.max_shard_size, assoc_iter=src_iter) index = 0 while not src_iter.hit_end(): index += 1 dataset = inputters.TextDataset( fields, src_iter, tgt_iter, src_iter.num_feats, tgt_iter.num_feats, src_seq_length=opt.src_seq_length, tgt_seq_length=opt.tgt_seq_length, dynamic_dict=opt.dynamic_dict) # We save fields in vocab.pt separately, so make it empty. dataset.fields = [] pt_file = "{:s}.{:s}.{:d}.pt".format( opt.save_data, corpus_type, index) logger.info(" * saving %s data shard to %s." % (corpus_type, pt_file)) torch.save(dataset, pt_file) ret_list.append(pt_file) return ret_list def build_save_dataset(corpus_type, fields, opt): """ Building and saving the dataset """ assert corpus_type in ['train', 'valid'] if corpus_type == 'train': src_corpus = opt.train_src tgt_corpus = opt.train_tgt else: src_corpus = opt.valid_src tgt_corpus = opt.valid_tgt # Currently we only do preprocess sharding for corpus: data_type=='text'. if opt.data_type == 'text': return build_save_in_shards( src_corpus, tgt_corpus, fields, corpus_type, opt) # For data_type == 'img' or 'audio', currently we don't do # preprocess sharding. We only build a monolithic dataset. # But since the interfaces are uniform, it would be not hard # to do this should users need this feature. dataset = inputters.build_dataset( fields, opt.data_type, src_path=src_corpus, tgt_path=tgt_corpus, src_dir=opt.src_dir, src_seq_length=opt.src_seq_length, tgt_seq_length=opt.tgt_seq_length, src_seq_length_trunc=opt.src_seq_length_trunc, tgt_seq_length_trunc=opt.tgt_seq_length_trunc, dynamic_dict=opt.dynamic_dict, sample_rate=opt.sample_rate, window_size=opt.window_size, window_stride=opt.window_stride, window=opt.window) # We save fields in vocab.pt seperately, so make it empty. dataset.fields = [] pt_file = "{:s}.{:s}.pt".format(opt.save_data, corpus_type) logger.info(" * saving %s dataset to %s." % (corpus_type, pt_file)) torch.save(dataset, pt_file) return [pt_file] def build_save_vocab(train_dataset, fields, opt): """ Building and saving the vocab """ fields = inputters.build_vocab(train_dataset, fields, opt.data_type, opt.share_vocab, opt.src_vocab, opt.src_vocab_size, opt.src_words_min_frequency, opt.tgt_vocab, opt.tgt_vocab_size, opt.tgt_words_min_frequency) # Can't save fields, so remove/reconstruct at training time. vocab_file = opt.save_data + '.vocab.pt' torch.save(inputters.save_fields_to_vocab(fields), vocab_file) def main(): opt = parse_args() init_logger(opt.log_file) logger.info("Extracting features...") src_nfeats = inputters.get_num_features( opt.data_type, opt.train_src, 'src') tgt_nfeats = inputters.get_num_features( opt.data_type, opt.train_tgt, 'tgt') logger.info(" * number of source features: %d." % src_nfeats) logger.info(" * number of target features: %d." % tgt_nfeats) logger.info("Building `Fields` object...") fields = inputters.get_fields(opt.data_type, src_nfeats, tgt_nfeats) logger.info("Building & saving training data...") train_dataset_files = build_save_dataset('train', fields, opt) logger.info("Building & saving vocabulary...") build_save_vocab(train_dataset_files, fields, opt) logger.info("Building & saving validation data...") build_save_dataset('valid', fields, opt) if __name__ == "__main__": main()